There are two major classes of interface connected to the Imsai/Altair/Sol... S-100 bus. These are:
1) Devices that are 'Memory Mapped'
2) Devices that appear as 'Input/Output Ports'

The following is a description of the signal lines used for these interfaces and their possible circuit implementation.

I) Input ports

There are 256 potential input ports requiring eight address lines. The bus sequence generated by the CPU is as follows:

1) Place the address of the input port on address lines AO-A7.
2) Assert Sinp, signifying this address is an Input Port.
3) Assert Pdbin
 This signal informs the addressed Input Port to place its data on the Data Input lines DIO-DI7, for the duration of PDBIN.

II) Output ports

There are 256 potential Output ports addressed by lines AO-A7. The following CPU bus sequence is generated:

1) Place address of output port on lines AO-A7.
2) Assert SOUT
 SOUT is a status signal identifying AO-A7 address as that of an Output Port.
3) Place data on data bus DOO-DO7
4) Assert \(\overline{FWR} \) (low)
 \(\overline{FWR} \) (processor write) is a write strobe pulse
 signifying data lines DOO-DO7 contain valid data for the duration of this pulse.

Interfacing of I/O ports usually involves decoding of Address lines AO-A7 (by jumpers to inverters and 8 input AND gates, EXCLUSIVE OR gates...) And signals coincidence of Sinp and PDBIN, or Sout and FWR.
Standard Interfacing to the S100 Bus (continued)

Memory Mapped Input / Output

Memory mapping allows for up to 65K addresses to be addressed for input output operations (Read/Write). Supporting this greater number of addresses, requires extra decoding of the top eight address lines A08 - A15. In addition it is 'good practice' to also decode SOUT, and SINP (both unasserted) for proper operation. Some systems use these signals during DMA, Interrupt sequences, or other arbitrary weirdness; so decoding of these two lines is an advised precaution.

III) Memory Write (Output to Memory)

The CPU bus sequence is as follows:
1) Place the address of the memory location to be written into, on address lines A0 - A15.
2) Assert MWrite
 This signal identifies a memory write operation.
3) Place data on Output data lines D00 - D07.
4) PWK is asserted (low) informing the addressed device, data on lines D00 - D07 is valid and may be taken in for the duration of this pulse.

IV) Memory Input (Read from Memory)

The CPU bus sequence is as follows:
1) Place the address of the location to be read from, on address lines A0 - A15.
2) Assert SMEMR, identifying this as a memory read operation.
3) Assert PDBIN
 This signal informs the addressed device to place the requested data on data input bus lines D10 - D17.

If slow memories or input output circuits are used (slower than the fastest bus cycle), 'Wait States' must be inserted by the slower device. The wait state holds the current bus signals until the device 'catches up.' To request a Wait state the PRDY line is brought low by the slower device. Timing involving PSYNC, PWAIT and the Theta two (θ2) clock is used (see later description of Addition of Wait States).
Requirements for a Flexible Audio/Video/Control System

To meet the requirement of flexibility, important functions should be maleable (programmable). It is taken as truth, that any 'userable' digitally controlled system, will need the following structures.

1) A Coordinating Microcomputer

This is a programmable, small computer, to be used for coordination and overall operation of the system. Activating devices, accepting user input as character strings, knobs, etc. to determine parameters for 'system orientation'.

2) A Flexible Bus Structure

Used for control of information and control between devices. The majority of these transfers will be to determine characteristic 'Element' operation.

3) An Input/Output Connection Scheme

This refers to the method of interconnecting final output or input from/to the controlled Elements'. These signals may be analog in nature.

Note that the Control signals are intentionally limited to digital signals. This is important to ensure reliable operation in a bus structured environment. Analog to digital conversion (A/D) or digital to analog conversion may be used inside the 'Elements' to modify operation, from outside signals.
Intelligent Bus Controller/Arbitrator Signal Paths

The Bus Controller is responsible for joining signal paths from separate buses. It also can decide what/when/and where data will be transferred. Once programmed it will time data transfers and coordinate signals across buses. Different programming can change the operation of these transfers (see Bus Controller Modes).

Buses:

1) Minicomputer bus
2) S-100 bus
3) 2nd Port bus

A) Connecting the 16 bit Minicomputer bus directly to S-100

This allows the minicomputer complete control of the S-100 bus in either eight bit or sixteen bit mode. It allows for 'loading' Elements with control programs without having to funnel through time buffers. Device/Elements are activated after they are 'programmed' allowing dense memories to be setup in one video field.

B) Joining 16 bit Minicomputer Bus to 2nd Port bus

This connection allows the S-100 Element Bus to run independently of the Port bus. The only time conflicts occur when simultaneous access to the same device is attempted by both buses. The controller tests and arbitrates this condition.
c) S-100 to 2nd Port bus

This is probably the least used of all possible connections. The reason is this ties up both buses for a single transfer. It might be a way to simultaneously read and write between the two buses possibly saving time on fast transfers. This connection still needs exploration.
Some Economic Considerations

The S-100 16/8 bit bus, has numerous capabilities. Some flexibility may be sacrificed, for use in smaller lower cost systems. Later additions may be accomplished with no major physical or conceptual changes.

Buses:

Three buses are used in the full system. These are:

1) Sixteen (16) bit micro/mini-computer bus
2) Second Port bus
3) S-100 16/8 bit bus

Programmable Controllers:

Three programmable controllers are used in the fully implemented system. Their tasks are shared, with their divisions determined by the system's use.

1) A Sixteen (16) bit mini/micro-computer.
2) An 'intelligent' bus controller/arbitrator
3) An eight (8) bit microprocessor

By juggling around combinations of these components, powerful economy systems may be devised.
Economic Considerations (continued)

1) No mini/micro-computer (sixteen bit) used.

Since this is the most expensive part of most systems, this could be a large savings. Elimination of the mini-computer also removes the need for it's interface.

In this case the eight bit microprocessor would take over the function of being the major controller. The microprocessor now is responsible for coordinating the entire system, and human interaction. The microprocessor could be placed on a separate bus, like the minicomputer, but the distinction between mini or micro computer is crossed. The major change is in the number of bits (16 or 8 etc.). The single microprocessor system is an excellent starting point. Later as more complex tasks are defined, a sixteen bit mini/micro computer may be added.

2) No second Port bus

This removes the need for extra circuitry on the element cards to accommodate this bus. This would place all changes in control functions, with the S-100 bus. This limits time critical application (online video). Carefully thought out timing changes could somewhat get over this limitation.
Economic Considerations (continued)

3) No Bus Controller/Arbitrator

If no Minicomputer (16 bit) is used, and the 2nd Port is unnecessary, all control will reside on the S-100 bus. A microprocessor is necessary on the S-100 bus. The functions of the Bus Controller would now be handled by Software. The Microprocessor executes this software to allow transfers of information to elements from/to Buffer Memory. The S-100 bus is kept in eight bit mode (the standard S-100 bus). This arrangement would limit the speed of operation, but is the cheapest in 'hardware' to implement.

4) No Eight bit Microprocessor

This would place all control functions with the 'Intelligent Bus Controller/Arbitrator and the Minicomputer (16 bit). Omission of the microprocessor is of questionable value, since it the lowest cost device in the system. But many functions involving transfer of data can easily be handled by the Bus Controller.

Caution should be exercised in apparent savings found by omitting hardware. Unless a roaming software expert is known, software is the most time consuming and expensive part of any reasonably complex system. The hardware -Software tradeoffs should be considered before saving on parts.
FROM
LSI-11
16 BIT COMPUTER INTERFACE

BUS CONTROLLER

BUFFER MEMORY

DEN MCARTHUR 16 BIT BUS

ELEMENTS

D/A

VDR
R,S,B
PROPOSED 16 BIT / 8 BIT S1CO

AUDIO / VIDEO / CONTROL BUS

MICRO/MINI COMPUTER
16 BIT OR GREATER

INTERFACE

'INTELLIGENT' BUS CONTROLLER/ARBITRATOR

2ND PORT BUS

S100 BUS

(16 BIT / 8 BIT)

Z80 / 8085 CPU

X-Y GENERATOR TIMING CLOCKS

16-1 DATA SELECTOR X-Y REGENERATION

64 WIRE MEMORY X-Y ADDRESS LOGIC

OTHER AUDIO VIDEO ELEMENTS

VIDEO OUTPUTS / INPUTS

AUDIO OUTPUTS / INPUTS

CONTROL INPUT / OUTPUTS
INTELLIGENT BUS CONTROLLER
SIGNAL PATHS

FROM 16 BIT
MICRO/MINI COMPUTER
INTERFACE

INTELLIGENT
BUS
CONTROLLER/
ARBITRATOR

2 PORT
DEVICE/
ELEMENT

16 BIT/8 BIT S100 BUS

POSSIBLE SIGNAL PATHS

1) 16 BIT INTERFACE <- -> S100 BUS
2) 16 BIT INTERFACE -> 2ND PORT BUS
3) S100 <- -> 2ND PORT BUS
DON BUS SIGNAL DESCRIPTION

VERTICAL BANKING EXPANDED

ADDRESS LINES
A1, A8, A9, A10

DATA LINES

WE (OUTPUT STROBE)
RE (INPUT STROBE)

SHAPED REGIONS REPRESENT "DON'T CARE" CONDITIONS

VERTICAL BANKING ACTIVE FRAME

ADDRESS DATA

WE RE

BUFFER MEMORY

n = 256 256 WORD SYSTEM
n = 1024 1024 WORD SYSTEM
L - M IS THE FEATURE AREA

*NOTE: PRESENT DON BUS DOES NOT TRISTATE THESE SIGNALS
Pinouts for Don Bus on the S100 bus

<table>
<thead>
<tr>
<th>Name</th>
<th>Pin Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>79</td>
</tr>
<tr>
<td>A1</td>
<td>80</td>
</tr>
<tr>
<td>A2</td>
<td>81</td>
</tr>
<tr>
<td>A3</td>
<td>31</td>
</tr>
<tr>
<td>A4</td>
<td>30</td>
</tr>
<tr>
<td>A5</td>
<td>29</td>
</tr>
<tr>
<td>A6</td>
<td>82</td>
</tr>
<tr>
<td>A7</td>
<td>83</td>
</tr>
<tr>
<td>A8</td>
<td>84</td>
</tr>
<tr>
<td>A9</td>
<td>34</td>
</tr>
<tr>
<td>A10</td>
<td>37</td>
</tr>
<tr>
<td>A11</td>
<td>87</td>
</tr>
<tr>
<td>A12</td>
<td>33</td>
</tr>
<tr>
<td>A13</td>
<td>85</td>
</tr>
<tr>
<td>A14</td>
<td>86</td>
</tr>
<tr>
<td>A15</td>
<td>32</td>
</tr>
</tbody>
</table>

Address lines: Notice the bizarre numbering on these pins. In the 256 word Don bus pins A1 - A8 are used. In the 1K version (that you Binghampton) lines A9 - A10 are used.

D00 (D100)	36
D01 (D101)	35
D02 (D102)	88
D03 (D103)	89
D04 (D104)	38
D05 (D105)	39
D06 (D106)	40
D07 (D107)	90
D108	56
D109	57
D1010	58
D1011	59
D1012	60
D1013	61
D1014	62
D1015	63
Byte	64

Data lines: note again the enjoyable scrambled numbers. The numbers on the left are S100 designations when available. Parenthesized names are for Don Bus. Note also lines on pins 56-67 are blank (unused on the standard S100 bus.)
Pinouts for Don Bus on the S100 bus

<table>
<thead>
<tr>
<th>Name</th>
<th>Pin number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xclock</td>
<td>12</td>
<td>(9.7 MHz clock)</td>
</tr>
<tr>
<td>Xload</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Yclock</td>
<td>14</td>
<td>(2 x H clock)</td>
</tr>
<tr>
<td>Yload</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Hdrive</td>
<td>16</td>
<td>(Horizontal drive, TTL)</td>
</tr>
<tr>
<td>Vdrive</td>
<td>17</td>
<td>(Vertical drive, TTL)</td>
</tr>
<tr>
<td>Subcar</td>
<td>66</td>
<td>(Subcarrier, TTL)</td>
</tr>
<tr>
<td>PWR</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Pdbin</td>
<td>78</td>
<td>Notice the current level of (\overline{RE}) is the reverse of PDBIN</td>
</tr>
<tr>
<td>+8 Volts</td>
<td>1, 51</td>
<td></td>
</tr>
<tr>
<td>+16 Volts</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>-16 Volts</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>50, 100</td>
<td></td>
</tr>
</tbody>
</table>

pins 12 to 17 are unused on the standard S100 bus