RPT Head made ready to pack:

1 Slip out Buchla transmitter from the holder and turn off the power (press top button on the transmitter body). Unplug the miniplug power cable of the transmitter and coil the wire under the Velcro strip on the rear of the Head. Unscrew two screws of the transmitter holder and screw the screw back to the Head belt. 2 Take the camera out by unscrewing the hex screw holding the Camera on the top. Disconnect two BNC cables, secure them with a rubber band.
3 Unscrew the Rotation sensor on the front top of the head held by two screws and remove the amp Board next. The Board is held by a single screw. It has a special spacer lifting and holding it from the Head. Disconnect the flat ribbon wire and pack the electronic inside the empty head.
4 Release two set hex screws 90 degrees apart at the Tilt Stepper Worm Wheel. This will let the head swing freely on its "Y" axes.
5 Release two upper and two lower ring-belt small hex screws and let the rear of the Head slide down towards the mirror at the center of the Head post. Leave a $1 / 4$ inch gap between the Rotation Ring Assembly and the mirror and tighten all four screws. Put a piece of foam between the Ring and mirror since the mirror lays normally free.
6 Remove one of the bottom plate hex screws to make place for a screw holding the wood piece which presses and holds the Head assembly to the bottom of the frame.
7 Slip the whole apparatus into the metal cage, secure all armature holding it and secure the bottom wooden plate.

Put no other loose stuff in the some box to protect all other Index hardware. Other units regularly sharing the luggage are the Light Dimmer boxes.

```
That Jeff guy
jeffsc@chips.com
Doschier
3928 Shafter Ave
Oakland Ca 94609
510-653-5825
TO : vasulka@ffa.vutbr.cz woody @ santafe.edu
```

Hi there Woody...
Heard from Steina and 'ya want info on that Personal Animation Recorder by DPS. Ed Tannebaum has one and says it works. It is a IBM/PC based interface card (ISA BUS - 16 bit), connected to a dedicated "IDE Hard Disk". It uses hardware based JPEG compression/decompression, to squeeze the images onto the disk. It has no audio provision so it works best for animation and visual sequences.

It has conversion utilities to and from Targa files, and adjustments for compression "quality factor", to trade off size of file versus quality. JPEG compression ratios of 10:1 are are close toll:50AM 5/9/95 the original, ratios of $\sim 6: 1$ are often called "betacam quality", and 20:1 shows blockiness and contouring. If you are using it with an SGI box as a "baby Abekas disk", there are issues of how to get the images from the SGI to the PC and back. A generic 486-66 PC/Clone with ISA slots, with 8 MB main memory, 700 MB disk, VGA graphics accelerator and a 17" Super VGA color monitor (0.28 mm Dot pitch/ 102*768 Non-interlaced : ex NEC XV17) will do fine for the card. PC/clone price ~ $\$ 1750$ (US). Personal Animation Recorder is around $\$ 2 \mathrm{~K}$ plus $\$ 1 \mathrm{~K}$ for the TBC IV option, to record composite/s-Video (not component) from live video. Without the TBC option, it has video output only and data comes form the PC. The IDE disk >1.7 Gigabyte (Micropolis 2217A, Conner, Seagate) will cost around $\$ 1 \mathrm{~K}$ to 1.5 K and up. This IDE disk is used exclusively by the PAR, and is independent from the PC/Clone hard disk. Below is a guess at NTSC/US pricing. Computer/Disk prices change daily :

PC 486/66 clone Computer 256 K cache, 8 MB memory, 750 MB disk, keyboard/floppy/mouse/case, SVGA graphics accelelartor \$ 1000
Computer-Monitor 17" \$ 750
DPS-PAR (main board) \$ 2000
DPS-PAR : TBCIV (TBC option) \$ 1000
PAR-DISK IDE (2 Gig) \$ 1500 Total -------> \$ 6250

Ethernet Networking Interface and Network software would be extra.
Contact DPS for info for use on Networks. They had bugs in getting it to work on a network, maybe they fixed it.

Ed Tannenbaum 510-787-1567 Crocket, Ca

```
USA -
DPS (Digital Processing Systems)
11 Spiral Drive
Suite 10
Florence, Kentucky 41042
Tel : 606-371-5533
Fax : 606-371-3729
Canada/International
DPS
55 Nugget ave
Unit 10
Scarboroug, Ontario Canada
M1S3L1
Tel : 416-754-8090
Fax : 416-754-7046
Europe
DPS Limited
Riverside Business Park
Unit #2
DogFlud Way,Farnham
Surrey U.K. GU9 7SS
tel : (0252)-718300
Fax : (0252) - 718400
```

'This is a modified DENX.mot for use in Brno starting Sep. '30, 1993
'introduction: rpt and lights on voice (to bypass voice, 'type "CO1 HOME" in console mode
set loop 1
set compass 1
listen home

| midi 89 | 24 | 01 | 'turn off light | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| midi 89 | 25 | 01 | 'turn off light | 2 |
| midi 89 | 26 | 01 | 'turn off light | 3 |
| midi 89 | 27 | 01 | 'turn off light | 4 |
| midi 89 | 28 | 01 | 'turn off light | 5 |
| midi 99 | 29 | $5 f$ | 'turn on light 6 | |

switcher 55
video 1 vd pl 12854
say 18 home 'RPT goes Home (North???)
rpt h clear "clear" is a label
end
rpt_label clear
midi $99245 \mathrm{f} \quad$ 'turn on light 1
midi 892501 'turn off light 2
midi 892601 'turn off light 3
midi 892701 'turn off light 4
midi 892801 'turn off light 5
midi 892901 'turn off light 6
switcher 55 rpt h chain 2
end

```
rpt_label chain1
    midi 89 27 01 'turn off light 4
    midi 99 24 5f 'turn on light 1
    switcher 55
    rpt l 0 0 0 1000 sss chain2
    video 19369 se pl
    if compass=1
                say }18\mathrm{ north
    if compass=2
                say 18 saskatchwann
                set loop 2
end
rpt_label chaỉn2
    midi 89 24 01 'turn off light 1
    midi 99 25 5f 'turn on light 2
    rpt l 90 0 180 1000 sss chain3
    video 20388 se pl
    if compass=1
```

```
    say }18\mathrm{ west
if compass=2
    say 18 ahrrizowna
```

end
rpt_label chain
midi 892501 'turn off light 2
midi 9928 ff 'turn on light 5
rpt l 45-90 1801000 sss chain
video 19824 se pl
if compass=1
say 18 sky
if compass =2
say 18 moon
end
rpt_label chain
midi 892801 'turn off light 5
midi 9926 ff 'turn on light 3
rpt 1180001000 sss chain
video 21628 se pl
if compass=1
say 18 south
if compass =2
say 18 ukahtann
end
rpt_label chains
midi 892601 'turn off light 3
midi 9927 ff 'turn on the light 4
if compass=1
say 18 east
set compass 3
if compass =2
say 18 oklahoohma
set compass 1
if compass =3
set compass 2
if loop =1
rpt 1270001000 sss chain 1
if loop =2
rpt 1270001000 sss start 3
end
s--------------------- DENISE2.MOT
rpt_label start 3
rpt h move3a
set compass 1
set loop 1
video 1 vd 13986 se 60 sp
end
rpt_label move3a
midi 892701
'turn off light 4
video 13986 se 60 sp
video 14708 mf
rpt $1180002000+++$ move3b 24
end
rpt_label move3b
video 60 sp 15069 mf
rpt 1270002000 +++ move3c 12
end
rpt_label move3c
video 16104 se
rpt i p $1111111+5$ move3d
end
rpt_label move3d video 15794 mr rpt $127027002000+-+$ move3e 10.32
end
rpt_label move3e midi $99295 f$ rpt i p $1111111+6$ move3f
end
rpt_label move3f video 16104 mf rpt $1270002000+++$ move3g 10.32
end
rpt_label move3g video 15069 se
rpt i p $1111111+3$ move3h
end
rpt_label move3h
video 15432 mf
switcher d5
rpt 10002000 +++ move3i 12.1
end
rpt_label move3i
video 30 sp 15252 mr
rpt 1315002000 -++ move3j 12.1
end
rpt_label move3j
video 60 sp 15432 mf switcher 55
rpt $10002000+++$ move3k 6.05
end
rpt_label move3k video 16463 se 30 sp

```
    video 17184 mf
    rpt l 0 180 0 2000 +++ move3l }2
end
rpt_label move3l
say 18 all done
switcher d5
video 1 vd 13986 se 60 sp
set compass 1
set loop 1
rpt i p 1 100 100 - 5 chain1
end
rpt_label start4
    video 1 vd 13986 se 60 sp
    switcher 55
    set loop 1
    set compass 1
    rpt h chain1
end
, --- lightning data follow
lightning one c4
        video 17399 se
end
lightning one c+4
video 17400 se
end
lightning one d4
        video 17401 se
end
lightning one d+4
        video 17402 se
end
lightning one e4
        video 17403 se
end
lightning one f4
        video 17404 se
end
lightning one f+4
        video 17405 se
end
lightning one g4
        video 17406 se
end
```

lightning one g+4
video 17407 se end
lightning one a4 video 17408 se end
lightning one a+4 video 17409 se end
lightning one b4 video 17410 se end
lightning one c5
video 17411 se end
lightning one c+5 video 17412 se end
lightning one d5 video 17413 se end
lightning one d+5 video 17414 se end
lightning one e5 video 17415 se end
lightning one f5 video 17416 se end
lightning one f+5
video 17417 se end
lightning one g5
video 17418 se
end
lightning one g+5 video 17419 se end
lightning one a5 video 17420 se
lightning one a+5
video 17421 se
end
'-------- this is the end of the lightning data

Log file friendly.txt Input Log file	START ENTRY
	DELTA_TIME 348.00 CHANNEL 0
for regular key 'heartbeat' input test	\90\49\10
for regular key heartbeat in	END_ENTRY
START_TIME Fri Apr 22 18:59:52 1994 START ENTRY	
START_ENTRY	DELTĀ_TIME 350.00
DELTA_TIME 0.000	CHANNEL 0
CHANNEL 0	\90\6e\6f
$\backslash 90 \backslash 4 \mathrm{e} \backslash 50$	END_ENTRY
END_ENTRY	
	START ENTRY
START_ENTRY	DELTA TIME 350.00
- DELTA_TIME 0.000	CHANNEL 0
CHANNEL 0	\90\44\10
$\backslash 90 \backslash 52 \backslash 50$	END_ENTRY
END_ENTRY	
	START ENTRY
START ENTRY	DELTA TIME 358.00
DELTA TIME 0.000	CHANNEL 0
CHANNEL 0	\90\49\10
$\backslash 90 \backslash 60 \backslash 10$	END_ENTRY
END_ENTRY	
	START_ENTRY
START_ENTRY	DELTA TIME 365.00
DELTA TIME 59.000	CHANNEL 0
CHANNEL 0	\90\3b\10
\90\61\10	END_ENTRY
END_ENTRY	
	START ENTRY
	DELTA ${ }^{\text {a }}$ TIME 368.00
START ENTRY	CHANNEL 0
DELTA TIME 105.00	\90\49\10
CHANNEL 0	END_ENTRY
\90\62\10	
END_ENTRY	START ENTRY
	DELTA TIME 378.00
START_ENTRY	CHANNEL 0
DELTA TIME 181.00	\90\49\10
CHANNEL 0	END_ENTRY
\90\63\10	
END_ENTRY	START_ENTRY DELTA TIME 380.00
START ENTRY	CHANNEL 0
DELTA TIME 261.00	$\backslash 90 \backslash 40 \backslash 10$
CHANNEL 0	END_ENTRY
\90\64\10	
END_ENTRY	START_ENTRY DELTA TIME 388.00
START_ENTRY	CHANNEE 0
DELTĀ_TIME 338.00	\90\49\10
CHANNEL 0	END_ENTRY
$\backslash 90 \backslash 48 \backslash 10$	
END_ENTRY	START_ENTRY DELTA TIME 395.00
END_ENTRY	CHANNEL 0
STA $\bar{R} T$ ENTRY	\90\39\10
DELTĀ_TIME 338.00	END_ENTRY
CHANNEL 0	
$\backslash 90 \backslash 70 \backslash 10$	START_ENTRY
END_ENTRY	DELTA TIME 398.00

$\backslash 90 \backslash 49 \backslash 10$ END_ENTRY

START ENTRY
DELTĀ TIME 408.00
CHANNEL 0
$\backslash 90 \backslash 49 \backslash 10$
END_ENTRY
START_ENTRY
DELTA TIME 410.00
CHANNEI 0
$\backslash 90 \backslash 42 \backslash 10$
END_ENTRY
START_ENTRY
DELTA TIME 418.00
CHANNEI 0
$\backslash 90 \backslash 49 \backslash 10$
END_ENTRY
START_ENTRY
DELTA TIME 428.00
CHANNEL 0
$\backslash 90 \backslash 49 \backslash 10$
END_ENTRY
START ENTRY
DELTA TIME 438.00
CHANNEL 0
$\backslash 90 \backslash 49 \backslash 10$
END_ENTRY
START_ENTRY
DELTA TIME 448.00
CHANNEL 0
\90\49\10
END ENTRY
START ENTRY
DELTA TIME 458.00
CHANNEL 0
$\backslash 90 \backslash 49 \backslash 10$
END_ENTRY
START_ENTRY DELTA_TIME 468.00
CHANNEL 0
$\backslash 90 \backslash 49 \backslash 7 f$
END_ENTRY
START_ENTRY
DELTA TIME 475.00
CHANNEL 0
\90\66\10
END_ENTRY
START_ENTRY DELTA_TIME 564.00
CHANNEL 0
\90\67\10
END_ENTRY
START ENTRY

DELTA TIME 625.00

CHANNEL 0
\90\68\35
END_ENTRY
START_ENTRY
DELTA_TIME 674.00
CHANNEL 0
\90\69\35
END_ENTRY
START_ENTRY
DELTA_TIME 691.00
CHANNEL 0
$\backslash 90 \backslash 6 a \backslash 35$
END_ENTRY
START_ENTRY DELTA_TIME 725.00
CHANNEL 0
$\backslash 90 \backslash 6 \mathrm{~b} \backslash 35$
END_ENTRY
START_ENTRY
DELTA TIME 744.00
CHANNEL 0
$\backslash 90 \backslash 6 c \backslash 35$
END_ENTRY
START_ENTRY
DELTA TIME 792.00
CHANNEL 0
$\backslash 90 \backslash 48 \backslash 10$
END_ENTRY
START ENTRY
DELTA TIME 792.00
CHANNEE 0
\90\70\10
END_ENTRY
START ENTRY
DELTA TIME 802.00
CHANNEL 0
$\backslash 90 \backslash 49 \backslash 10$
END_ENTRY
START ENTRY
DELTA TIME 805.00
CHANNEE 0
\90\6f\10
END_ENTRY
START ENTRY
DELTA TIME 812.00
CHANNEL 0
$\backslash 90 \backslash 49 \backslash 10$
END_ENTRY
START ENTRY
DELTA TIME 820.00
CHANNEL 0
$\backslash 90 \backslash 3 \mathrm{e} \backslash 10$
END ENTRY

START ENTRY
DELTA \bar{A} TIME 822.00
CHANNEL 0
$\backslash 90 \backslash 49 \backslash 10$
END_ENTRY
START ENTRY
DELTA TIME 832.00
CHANNEL 0
$\backslash 90 \backslash 49 \backslash 10$
END_ENTRY
START ENTRY
DELTA TIME 835.00
CHANNEL 0
$\backslash 90 \backslash 3 a \backslash 10$
END_ENTRY
START_ENTRY
DELTA TIME 842.00
CHANNEL 0
$\backslash 90 \backslash 49 \backslash 10$
END_ENTRY
START_ENTRY
DELTĀ_TIME 845.00
CHANNEL 0
$\backslash 90 \backslash 41 \backslash 10$
END_ENTRY
START ENTRY
DELTA TIME 852.00
CHANNEL 0
$\backslash 90 \backslash 49 \backslash 10$
END_ENTRY
START ENTRY
DELTĀ_TIME 862.00
CHANNEL 0
$\backslash 90 \backslash 49 \backslash 10$
END_ENTRY
START ENTRY
DELTA TIME 865.00
CHANNEE 0
$\backslash 90 \backslash 33 \backslash 10$
END_ENTRY
START_ENTRY
DELTA TIME 872.00
CHANNEE 0
$\backslash 90 \backslash 49 \backslash 10$
END_ENTRY
START ENTRY
DELTA TIME 882.00
CHANNEL 0
$\backslash 90 \backslash 49 \backslash 10$
END_ENTRY
START ENTRY
DELTA TIME 892.00
CHANNEI 0

```
\90\49\10
END_ENTRY
START ENTRY
    DELTA TIME 902.00
CHANNE\overline{L}}
\90\49\10
END ENTRY
START_ENTRY
    DELTA TIME 912.00
CHANNET 0
\90\49\10
END_ENTRY
START_ENTRY
        DELTA_TIME 922.00
CHANNEL 0
\90\49\7f
END_ENTRY
START_ENTRY
    DELTA TIME 927.00
CHANNEL 0
\90\49\35
END_ENTRY
rewind
```

＇Rotterdam sleep mode

set tsleep 1

set video mode 1
set cylinder 1
set light 1
set slide 1
＇ $9+0$
midian one xIs
if tsleep＝1
air 5 on
end
＇al
midian one x15
if tsleep＝1
air 5 off
end
＇cZ INITIATE SLEEP
midian one x24
if tsleep＝0
dimmer F5\rD1－3＠0\rG
if tsleep＝0
dimmer F5\rD4＠75\rG
if tsleep＝0
video 1se
if tsleep＝0
air 1 on
if tsleep＝0
air 2 on
if tsleep＝0
air 3 on
if sleep $=0$
air 4 on
if tsleep＝0
air 5 on
if sleep $=0$
midi bf 13 Ff
end
＇C＋AWAKEN
midian one x25
if tsleep＝0
dimmer F5\rD2＠40\rG
if tsleep＝0
dimmer F5\rD3＠65\rG
if tsleep＝0
dimmer F5\rD4＠0\rG
if tsleep＝0
video 5 sep
if tsleep＝0
air 1 off
if tsleep＝0
air 2 off
if tsleep＝0
air 3 off
if tsleep＝0
air 4 off
if tsleep＝0
set tsleep 450
end
＇cs
midian one x48
if tsleep＝1
midi bf 131
if tsleep＝1
air 1 on
if tsleep＝1
air 2 on
if tsleep＝1
air 3 on
if tsleep＝1
air 4 on
if sleep $=1$
air 5 on
if tsleep＝1
dimmer F1 $\backslash r D 1 @ 100 \backslash r G$
if tsleep＝1
dimmer F5 1 rD3＠0 1 mG
end
＇d5
midian one $x 4 a$
if tsleep＝1
air 1 on
if tsleep＝1
air 2 on
if tsleep＝1
air 3 on
if tsleep＝1
air 4 on
if tsleep＝1
air 5 on
end
＇ $\mathrm{C}+5$
midi in one x49 vel 7
if tsleep＝1
midi bf 13 ff
set video＿mode 1
if tsleep $=1^{\circ}$
air 1 off
if tsleep＝1
air 2 off
if tsleep＝1
air 3 off
if tsleep＝1
air 5 off
if tsleep＝1
dimmer F5\rD1＠0\rG
end
＇ $\mathrm{c}+5$
midian one x49 vel ？
if tsleep＝1
air 4 off
end
＇ct
midian one x49 vel C
slide down 1
end
＇ct
midian one $x 49$ vel 30 Te
if tsleep＝1
slide up 1
end
＇fo
midian one $x 4 e$ vel $12 f$
if tsleep＝1
video 0 ad 0 vd
end
＇fo
midian one $x 4 e$ vel $305 f$
midi bf 3340
midi bf 1064
midi bf 1164
midi bf 1264
midi bf 137 f
video 64 rb
end
＇fo
midian one $x 4 e$ vel $607 f$
if tsleep＝1
video 3 ad 1 vd
end
＇gS
midian one $x 4 f$
if video＿mode＝1
video st
if tsleep＝1
video st
end
＇ $9+5$
midian one x50
if video＿mode＝1
video 10 sp
if tsleep＝1
video 10 sp
end
＇as
midian one x51
if video mode＝1
video mf
if tsleep＝1
video mf
end
＇a＋5
midian one x52 vel 124
if video＿mode＝1
video 12 sp mf
end
midiin one $x 52$ vel 2539
if video mode=1
video $30 \overline{s p} \mathrm{mf}$
end
'a+5
midiin one $x 52$ vel 3a $5 f$
if video_mode=1
video pl
end
$1 a+5$
midiin one $x 52$ vel 606 f
if video mode=1
video $12 \overline{0} \mathrm{sp} \mathrm{mf}$
end
'a+5
midiin one $x 52$ vel $707 f$
if video mode=1
video $24 \overline{0} \mathrm{sp} \mathrm{mf}$ end
'b5
midiin one x53
if video mode=1
video mr
end
${ }^{\prime} \mathrm{C}+6$
midiin one x55
if tsleep=1
air 1 on
if tsleep=1
air 2 on
if tsleep=1
air 3 on
if tsleep=1
air 4 on
if tsleep=1
air 5 on
if tsleep=1
dimmer F5\rD1@100\rG
end
'f6 117 sec
midiin one x59
if tsleep=1
dimmer F6\rD1@0\rG
if tsleep=1
midi 903110
if tsleep=1
dimmer F5\rD2@40\rG
if tsleep=1
dimmer F5\rD3@65\rG
if tsleep=1
video 12608se16141pl
if tsleep=1
air 1 off
if tsleep=1
air 2 off
if tsleep=1
air 3 off

air 4 off	air 3 off
if tsleep=1	if tsleep=1
air 5 off	air 4 off
end	if tsleep=1
	air 5 off
'g6	end
midiin one x5b	
if tsleep=1	'c+7 46 sec
air 1 on	midiin one x61
if tsleep=1	if tsleep=1
air 2 on	dimmer F5\rD1@0\rG
if tsleep=1	if tsleep=1
air 3 on	dimmer F5\rD2@40\rG
if tsleep=1	if tsleep=1
air 4 on	dimmer F5\rD3@65\rG
if tsleep=1	if tsleep=1
air 5 on	video 1802se3200pl
if tsleep=1	if tsleep=1
video pa	air 1 off
if tsleep=1	if tsleep=1
dimmer R	air 2 off
if tsleep=1	if tsleep=1
dimmer D1@100\rG	air 3 off
if tsleep=1	if tsleep=1
slide down 30	air 4 off
end	if tsleep=1
	air 5 off
'b6 496 sec	end
midiin one x5f	
if tsleep=1	'd7 76 sec
dimmer F5\rD1@0\rG	midiin one x62
if tsleep=1	if tsleep=1
dimmer F5\rD2@40\rG	dimmer F5\rD1@0\rG
if tsleep=1	if tsleep=1
dimmer F5\rD3@65\rG	dimmer F5\rD2@40\rG
if tsleep=1	if tsleep=1
video 29082se43969pl	dimmer F5\rD3@65\rG
if tsleep=1	if tsleep=1
air 1 off	video 3261se5551pl
if tsleep=1	if tsleep=1
air 2 off	air 1 off
if tsleep=1	if tsleep=1
air 3 off	air 2 off
if tsleep=1	if tsleep=1
air 4 off	air 3 off
if tsleep=1	if tsleep=1
air 5 off	air 4 off
end	if tsleep=1
	air 5 off
'c7 59 sec	end
midiin one x60	
if tsleep=1	'd+7 80 sec
dimmer F5\rD1@0\rG	midiin one x63
if tsleep=1	if tsleep=1
dimmer F5\rD2@40\rG	dimmer F5\rD1@0\rG
if tsleep=1	if tsleep=1
dimmer F5\rD3@65\rG	dimmer F5\rD2@40\rG
if tsleep=1	if tsleep=1
video 5se1801pl	dimmer F5\rD3@65\rG
if tsleep=1	if tsleep=1
air 1 off	video 5552se7973pl
if tsleep=1	if tsleep=1
air 2 off	arir 1 off
-	- -

air 4 off
if tsleep=1
air 5 off
end
' ${ }^{6} 6$
midin one $x 5 b$
if tsleep=1
if tsleep=1
air 2 on
if tsleep=1
air 3 on
if tsleep=1
air 4 on
if tsleep=1
air 5 on
if tsleep=1
video pa
if tsleep=1
if tsleep=1
dimmer D1@100\rG
if tsleep=1
slide down 30
end
'b6 496 sec
midiin one x5f
if tsleep=1
dimmer F5\rD1@0\rG
dimmer F5\rD2@40\rG
if tsleep=1
dimmer F5\rD3@65\rG
if tsleep=1
video 29082se43969pl
if tsleep=1
air 1 off
if tsleep=1
air 2 off
if tsleep=1
air 3 off
if tsleep=1
if tsleep=1
air 5 off
end
'c7 59 sec
midiin one x60
if tsleep=1
dimmer F5\rD1@0\rG
if tsleep=1
dimmer F5\rD2@40\rG
if tsleep=1
dimmer F5\rD3@65\rG
1f tsleep=1
1deo 5se1801p1
air 1 off
if tsleep=1
air 2 off
air 3 off
if tsleep=1
air 4 off
if tsleep=1
air 5 off
end
${ }^{1} \mathrm{c}+746 \mathrm{sec}$
midiin one x61
if tsleep=1
dimmer F5\rD1@0\rG
if tsleep=1
dimmer F5\rD2@40\rG
if tsleep=1
dimmer F5\rD3@65\rG
if tsleep=1
video 1802 se3200pl
+1
if tsleep=1
air 2 off
if tsleep=1
air 3 off
if tsleep=1
air 4 off
if tsleep=1
air 5 off
end
'd7 76 sec
midiin one x62
if tsleep=1
dimmer F5\rD1@0\rG
if tsleep=1
dimmer F5\rD2@40\rG
if tsleep=1
dimmer F5\rD3@65\rG
if tsleep=1
video 3261se5551pl
if tsleep=1
air 1 off
if tsleep=1
if t sleep $=1$
air 3 off
if tsleep=1
air 4 off
if tsleep=1
air 5 off
end
'd+7 80 sec
midiin one x63
if tsleep=1
dimmer F5\rD1@0\rG
if tsleep=1
dimmer $\operatorname{F5} \backslash r D 2 @ 40 \backslash r G$
if tsleep=1
dimmer F5\rD3@65\rG
if tsleep=1
video 5552se7973pl
if tsleep=1
arir 1 off
air 2 off
if tsleep=1
air 3 off
if tsleep=1
air 4 off
if tsleep=1
air 5 off
end
'e7 77 sec
midiin one x64
if tsleep=1
dimmer F5\rD1@0\rG
if tsleep=1
dimmer F5\rD2@40\rG
if tsleep=1
dimmer F5\rD3@65\rG
if tsleep=1
video 7974sel0303pl
if tsleep=1
air 1 off
if tsleep=1
air 2 off
if tsleep=1
air 3 off
if tsleep=1
air 4 off
if tsleep=1
air 5 off
end
'f7 41 sec
midiin one x65
if tsleep=1
dimmer F5\rD1@0\rG
if tsleep=1
dimmer F5\rD2@40\rG
if tsleep=1
dimmer F5\rD3@65\rG
if tsleep=1
video 11380se12607pl
if tsleep=1.
air 1 off
if tsleep=1
aix 2 off
if tsleep=1
air 3 off
if tsleep=1
air 4 off
if tsleep=1
air 5 off
end
'f+7 95 sec
midiin one x66
if tsleep=1
dimmer F5\rD1@0\rG
if tsleep=1
dimmer F5\rD2@40\rG
if tsleep=1
dimmer F5\rD3@65\rG
if tsleep=1
video 16142se19010pl
air 1 off
if tsleep=1
air 2 off
if tsleep=1
air 3 off
if tsleep=1
air 4 off
if tsleep=1
air 5 off
end
'g7 161 sec
midiin one x67
if tsleep=1
dimmer F5\rD1@0\rG
if tsleep=1
dimmer F5\rD2@40\rG
if tsleep=1
dimmer F5\rD3@65\rG
if tsleep=1
video 19011se23851pl
if tsleep=1
air 1 off
if tsleep=1
air 2 off
if tsleep=1
air 3 off
if tsleep=1
air 4 off
if tsleep=1
air 5 off
end
'g+7 48 sec
midiin one x68
if tsleep=1
dimmer F5 \backslash rD1@0 \backslash rG
if tsleep=1
dimmer F5\rD2@40\rG
if tsleep=1
dimmer F5\rD3@65\rG
if tsleep=1
video 23852se25287pl
if tsleep=1
air 1 off
if tsleep=1
air 2 off
if tsleep=1
air 3 off
if tsleep=1
air 4 off
if tsleep=1
air 5 off
end
'a7 16 sec
midiin one x69
if tsleep=1
dimmer F5\rD1@0\rG
if tsleep $=1$
dimmer F5\rD2@40\rG
if tsleep=1
dimmer F5\rD3@65\rG
video 25288se25775pl
if tsleep=1
air 1 off
if tsleep=1
air 2 off
if tsleep=1
air 3 off
if tsleep=1
air 4 off
if tsleep=1
air 5 off
end
$1 \mathrm{a}+733 \mathrm{sec}$
midiin one x6a
if tsleep=1
dimmer F5\rD1@0\rG
if tsleep=1
dimmer F5\rD2@40\rG
if tsleep=1
dimmer F5\rD3@65\rG
if tsleep=1
video 25776se26775pl
if tsleep=1
air 1 off
if tsleep=1
air 2 off
if tsleep=1
air 3 off
if tsleep=1
air 4 off
if tsleep=1
air 5 off
end
'b7 28 sec
midiin one $x 6 b$
if tsleep=1
dimmer F5\rD1@0\rG
if tsleep=1
dimmer F5\rD2@40\rG
if tsleep=1
dimmer F5\rD3@65\rG
if tsleep=1
video 26776se27638pl
if tsleep=1
air 1 off
if tsleep=1
air 2 off
if tsleep=1
air 3 off
air 4 off
air 5 off
end
'c8 47 sec
midiin one x 6 c
if tsleep=1
dimmer F5\rD1@0\rG
if tsleep=1
dimmer F5\rD2@40\rG
if tsleep=1
dimmer F5\rD3@65\rG

```
video 27639se29043pl
    if tsleep=1
    air l off
    if tsleep=1
    air 2 off
    if tsleep=1
    air 3 off
    if tsleep=1
    air 4 Off
    if tsleep=1
    air 5 off
    end
    'c+8 207 sec
midiin one x6d
if tsleep=1
dimmer F5\rD1@0\rG
if tsleep=1
dimmer F5\rD2@40\rG
if tsleep=1
dimmer F5\rD3@65\rG
if tsleep=1
video 44271se50477pl
if tsleep=1
air l off
if tsleep=1
air 2 off
if tsleep=1
air 3 off
if tsleep=1
air 4 off
if tsleep=1
air 5 off
end
'd8
midiin one x6e
if tsleep=1
video 29082sepl
end
d}d+
midiin one x6f
if tsleep=1
video 34000sepl
end
'e8
midiin one x70
set video_mode 0
video lse
end
'd3-d+3 496 sec
midiin two x32-x33
if video mode=1
video 29\overline{0}82se43969pl
end
'e3-f3
midiin two x34-x35
if video mode=1
video 79\overline{74sepl}
```

TILENAME：RELEASE．TXT $13.109 \quad 94-10-01$
MINICOM Release Notes
Version 2.12
10／1／94

Russ Gritzo，
Jericho Data Systems

Version 2．12，10／1／94
Version 2.12 is an enhancement release of MINICOM that changes the way the system device labels work．

A feature was added to allow a system device（sysdev）label to be set such that it persists for some period of time，and then expires on its own．This allows the code to set up a condition that will last for some period of time and then go away automatically．This condition can be continuously overwritten or updated，so it has the effect of being a＇watchdog timer＇． This modification was done in such a way as to not require a mod in the DAD code in order to support the use of this feature．As a result this feature has the following behavior：

Labels that can assume this timing property must start with the letter t lower case）．This is an indicator to the code to treat these labels special． For labels that start with t ，the value is treated differently．If the value is initialized to a 0 or a 1 ，the code will treat the label as a regular label，testing for the conditions 0 or 1 ．If，however，the value is initialized to a 15 ，the label will assume the value of 1 for 15 seconds，and then default to 0．This initialization works the same from either the SYSDEV．CFG file，or from sending a message directly to the system device．

For example，assume the MIDI．CFG file has the following key entries：
MIDI＿KEY 41
LOW 0x29
HI 0x2f
NOTE＿ON
MIDI＿CHANNEL 00
CONDITTION test
VALUE 1
DEVICE 0
TEST SET
END＿KEY
MIDI KEY 42
LOW 0x29
HI 0x2f
NOTE＿ON
MIDI CHANNEL 00
CONDITTION test
VALUE 0
DEVICE 0
TEST CLEAR
END＿K̄EY
And assume that the SYSDEV．CFG file contains the following label declaration：

When the code first starts up, anytime the midi channel gets a NOTE ON of $0 x 2 a$ the console will display the string TEST_SET. Once 60 seconds have gone by, the label value will time out and default to 0 . From then on the console will display TEST_CLEAR each time the midi note is input. The label can be reset to time out again by sending the sysdev a 'test 90' message (set test to 1 for 90 seconds) or can be set on permanently by sending a 'test 1' message. Remember that this can be tested by typing 'dis test 90' at the keyboard to send a message to the system device directly from the keyboard. If a new time value is sent to the label prior to the timeout, the timeout duration will be restarted.

The timed labels can only assume the values of 0 or 1 , but the code can have multiple timed labels (up to the 32 label maximum). The timing value is in seconds, up to a maximum of 32000 (about 8 hours).

The behavior of the other labels (ones that don't start with a t in the first letter of the name) stays the same, with one minor difference. In previous versions of the code having a condition value of 0 (say in a midi key entry) caused that key entry to execute unconditionally. This forced the user to avoid using 0 , and use non zero numbers for most conditions. This has changed now, and 0 is a legitimate state. If the user specifies a key entry with a condition of 0 , that key will only execute if the sysdev label value is 0 . The only way now to make a key entry unconditional is to not specify any label in the key entry. This makes the key execute unconditionally. If the user has a condition label on every key entry, the label values will have to be setup explicitly in the sysdev initialization in order to work. Unless the user has set all midi keys to have conditions with nonzero length label names, this release of the code should be compatible with earlier . CFG files.

Version 2.11, 4/22/94
Version 2.11 is an enhancement release of MINICOM that changes the way that file input works and increases the number of midi key values supported.

MINICOM now supports 256 MIDI key values, numbered 0-255.
The file input has been enhanced. The input file command string now supports the string conversion referred to in the INTERCOM manual. This allows the user to, say, send a midi string to the midi channel by specifying ' $\backslash 90 \backslash 3 c \backslash 40$ ' rather than having to figure out what obscure ascii characters these are and how to input them in an editor or having to generate them by a file output first.

The file input now also supports the keyword 'rewind'. If this keyword appears at the end of the input file specified in file.cfg, then the software will rewind back to the beginning of the file and reset the start time value. Thus, the following input file simulates a midi NOTE IN, once each 10 seconds. The first note, at 10 seconds, is a note value of 0×30, and the second, at 20 seconds, is a 0x3c. This repeats until the code is stopped.

FILE INPUT SAMPLE FILE:
Log file infile.txt
Input Log file
for regular key 'heartbeat' input test
START_TIME Fri Apr 22 18:59:52 1994

START ENTRY
DELTA TIME 10.000000
CHANNEL 0
É0@
END_ENTRY
START ENTRY
DELTA TIME 20.000000
CHANNEL 0
$\backslash 90 \backslash 3 c \backslash 41$
END_ENTRY

rewind

:FILE INPUT SAMPLE FILE

In order for this input to work, the user must have entered the file name of the input file in FILE.CFG, under the INPUT_FILE entry. Also, the user should know what channels are used on the input stream of the devices, as it is these channels that the code inputs the commands to from the file device.

If the file output is used, the file device must be specified as a destination in the channels for which you want to record an input.

While this feature is useful, it does have some limitations. Currently there is no provision to stop the looping, short of stopping the code. If the user wanted to cease the execution of these inputs, he would have to use system labels and set a mode such that the inputs of these values are ignored. Also, there is no way to dynamically alter the timing using this method. The commands will be input at fixed times, no matter what.

Of course, the real-time input is not suppressed during this time, and the code should work normally. Examples of how this feature could be used include: regular timing, full-blown scripting of a performance, and a periodic reset to a known state.

To elaborate on the regular timing idea, if the input file shown above were used, a midi note would come in every 10 seconds, no matter what else is going on. The other conditions, like label values, etc. could dictate how you used this note in, but at least it would come in regularly, mixed with any real-time input.

If you fully script a performance, and add the rewind keyword, then a performance could take on an underlying tone or set of actions driven by the file input, with the ability of the user to make real-time inputs, and at the end of the script reset itself and repeat.

If all you wanted was a reset, you could have a set of commands that set the machine to a known state once each 30 minutes or so, and do that repeatedly.

In a future version of MINICOM a device called 'timer' will be added to allow the posting of a command to execute at some specific time.
/*******************
Version $2.1,4 / 15 / 94$
Version 2.1 is an enhancement release of MINICOM to support two new devices and two new ports. Notes on these two devices appear below.

Access to a lighting unit is provided．It is called Device 9，and is connected to port 9．It uses COM 6 of the COM x／i board，which is labeled number 2 on the octopus cable set．Currently it is output only，but it will accept input in the form of a reply from the light unit．Any string returning from the lighting unit will be displayed on the screen if the screen diags （in the channel．cfg file）is set to a number greater than one．This allows the user to see what the replies the light unit is sending back，a useful feature for command debugging．MINICOM is not able to take a specific action on the light input，and so it does not require a CFG file of it＇s own．

The light unit output behaves in exactly the same manner as the disk output， with a carriage return（ $0 x 0 d$ ）appended to the end of all outputs automatically．Only ASCII strings are allowed to be put out．

Sound unit．
The sound unit is very similar to the lighting unit．The sound unit is called Device 10，and is connected to port 10．It uses COM 7 of the COM x / i board， which is labeled number 3 on the octopus cable set．Currently it is output only，but it will accept input in the form of a reply from the sound unit． Any string returning from the sound unit will be displayed on the screen if the screen diags（in the channel．cfg file）is set to a number greater than one．This allows the user to see what the replies the sound unit is sending back，a useful feature for command debugging．MINICOM is not able to take a specific action on the sound input，and so it does not require a CFG file of it＇s own．

The sound unit output behaves in exactly the same manner as the disk output， with a carriage return（0x0d）appended to the end of all outputs automatically．Only ASCII strings are allowed to be put out．

Altering the CHANNEL．CFG file：
CHANNEL．CFG must be modified to support the new devices．The first thing to do is to add the following line to any channels that must send anything out to the new devices：

DEST	9	（For the light unit）
DEST	10	（For the sound unit）

This line should appear after the PARAM lines and must appear before the END＿CHANNEL line．Most likely it will be added to the channel for the midi device and the console device as a minimum．Without this line the channels will not be able to talk to the devices．

Channel descriptions for the two devices must be added to accept the input reply information，and to configure the baud rate，etc．Example channel descriptions for the light unit and the sound unit are shown below：

CHANNEL＿NUMBER 7
NAME Light＿Unit
DEVICE 9 ligh̄t unit
PORT $\quad 9$ Com6，comx／i board
IO 2
TERM end
INT 0×0
ADDR 0x0
PARAM 09600 Baud
PARAM 18 Bits
PARAM 20 Parity
PARAM 31 Stop
DEST 0
END＿CHANNEL
CHANNEL＿NUMBER 8
NAME Sound＿Unit
DEVICE 10 soūnd unit

IO 2
TERM end
INT 0x0
ADDR 0x0
PARAM 09600 Baud
PARAM 18 Bits
PARAM 20 Parity
PARAM 31 Stop
DEST
0
END_CHANNEL
The channel number are somewhat arbitrary, but they must not be in conflict with any existing channel numbers.

Version 2.0, 4/8/94
Version 2.0 is a major rewrite of MINICOM to both bring it up to date with new changes in INTERCOM (version 1.71) and to support the Brotherhood Table III project. Notes on this version appear in several categories, as listed below.

Configuration.
This version of MINICOM supports the following configuration:
Computer $=$ Toshiba T1200XE with expansion chassis, Add-in board $=C O M / X i$ board with DOS/BIOS driver, COM1 = MIDI via the Portman/s midi interface, COM5 = the laser disk player via the COM/Xi board, and interface to the air and slide system using the Heckel parallel port interface board.

Note: The laptop must have the following statement in CONFIG.SYS: device $=$ xidos5.sys, assuming that the file is in the root path. Prior to useage the first time, the program XIDOSCFG.EXE (in the DIGIBOARD directory) must be run to set the configuration. Set the following parameters to start with:

Board\#	1
Type	COM/Xi
Window 32 K	
Memory D0000h	
I/O Port	0300
IRQ	12
\# Channels	8
Start Channel	4
Driver	INT 14h

Under channel parameters, set all channels to 9600 Baud, Mode of $8, N, 1$ and TX and RX flow of NONE. When changing any of these, a new version of XIDOS5.SYS will be written in the DIGIBOARD directory, and must be copied to the root to be picked up by the CONFIG.SYS. The COM/Xi board will now be supported by the BIOS INT 14 calls.

New Devices:
MINICOM version 2.0 adds two new devices, number 7 is the air cylinders, and number 8 is the slide projector.

CRATES	height	width	iength	weight(Kg)
$2-2200 \mathrm{~s}$	69 cm	61 cm	64 cm	43
$4-2200 \mathrm{~s}$	69 cm	75 cm	117 cm	70
$2-8000 \mathrm{~s}$	64 cm	62 cm	64 cm	56
$5-8000 \mathrm{~s}$	69 cm	66 cm	122 cm	115
$5-8000 \mathrm{~s}$	69 cm	66 cm	122 cm	115
Lyon Wood	74 cm	52 cm	169 cm	116
Motal	61 cm	83 cm	12 cm	76
Wood (Mirror)	54 cm	15 cm	86 cm	16
Wood (Mirror)	54 cm	15 cm	86 cm	20
Ylastic Tube 11.5 cm diameter $\times 191 \mathrm{~cm}$ long	10			
Plastic Tube 11.5 cm diameter $\times 191 \mathrm{~cm}$ long	10			
			TOTAL	647

(We may add to the existing crates additional material of about 10 Kg)

Contents:

\#2200s and 8000 s refers to two different models of Pioneer Laserdisk players, each estimated for a replacement value of $\$ 300$ for a total of
"Lyon wood" and "Metal" contains an art exhibit titted "Machino vision" with replacement value for both crates.
\$22,000
Two "Mirror" boxes contain split beain mirror assemblys @ $\$ 400$ each
$\$ 800$
Plastic Tubes@\$300 each (screens \& frames) \$600
Disk Synchronizer, replacement valus:
$\$ 900$
Media, (7 Laser disks) replacement value
$\$ 2,100$

Destination:

Prague Airport, then:
Dum Umeni mesta Bma (Art Galery of city of Brno) 61600 Brno,
Czech republic, (second size city in the republic, about 200 miles SE of Prague)

Sponsor:

Silioon Graphios s.r.o.
Michal Klimes
Czech Technology Park
Technicka 15
61600 Brno
Czech Republic
vmail: 58420
michalk@bno.sgi.com
Contral Phone: +42-5-41191919
Dir. Phone: +42-5-41191931
Fax: 142-5-41191915

Date for arrival:
October 51996

Trienale Ruhr Project
The Vasulkas/Dunn preliminary budget:

Fees:

3	-	Artistic fees
2	-	Technical personnel fees

SubTotal
$\$ 60,000$

Travel:
All personnel $\$ 8,000$

Lab and Production
Period: Fall 1995
Length: 3 Months
Option 1 (Santa Fe) \$30,000
Option 2 (European Institution) ?
Option 3 (Oberhausen, on site) ?

Additional expenses:

Administrative
Media - Tapes, data disks, Laserdisks, data preparation, data compression, CD/Rom and audio CD formatting etc.
Custom engineering (hardware parts)

