16 Dr. Terald O'Grady with compliments from Words Rode

History of Electronic Sound Modification*

HARALD BODE

Bode Sound Co., North Tonawanda, NY 14120, USA

0 INTRODUCTION

The history of electronic sound modification is as old as the history of electronic musical instruments and electronic sound transmission, recording, and reproduction.

Means for modifying electrically generated sound have been known since the late 19th century, when Thaddeus Cahill created his Telharmonium.

With the advent of the electronic age, spurred first by the invention of the electron tube, and the more recent development of solid-state devices, an astounding variety of sound modifiers have been created for filtering, distorting, equalizing, amplitude and frequency modulating, Doppler effect and ring modulating, compressing, reverberating, repeating, flanging, phasing, pitch changing, chorusing, frequency shifting, analyzing, and resynthesizing natural and artificial sound.

In this paper some highlights of historical development are reviewed, covering the time from 1896 to the present.

1 THE ELECTROMECHANICAL ERA

To give a more complete account on this history, it is important to include the time span that preceded the purely electronic era, and also to include some history of electronic (and electrical) instruments whose sound modification devices formed an integral part of the entire system.

A classic case is the Telharmonium, by Thaddeus Cahill (Fig. 1), which was built around 1896 [1]–[10]. This instrument used the principle of additive tone synthesis for sound manipulation and modification. The individual tone colors were built up from fundamentals and overtones, generated by huge dynamos. For the purpose of generating pure sine waves for the synthesis, the individual generator coils were tuned with capacitors, another means of sound modification.

2 THE ELECTRONIC ERA

After the Telharmonium, and especially after the invention of the vacuum tube, scores of electronic (and electronic mechanical) musical instruments were invented with sound modification features. The Hammond organ is of special interest, since it evolved from Cahill's work. Many notable inventions in electronic sound modification are associated with this instrument, which will be discussed later.

Other instruments of the early 1930s included the Trautonium by the German F. Trautwein, which was built in several versions. The Trautonium used resonance filters to emphasize selective overtone regions, called formants [11]-[14]. In contrast, the German Jörg Mager built an organlike instrument for which he used loudspeakers with all types of driver systems and shapes to obtain different sounds.

In 1937 the author created the Warbo Formant organ, which had circuitry for envelope shaping as well as more complex filters than those used before. It had two sets of filters and a four-voice assignment keyboard [15] through which, for instance, voices 1 and 3 could be assigned to the first filter and voices 2 and 4 to the second filter (Fig. 2). By making the pass regions of the filters mutually exclusive, complementary tone colors could be produced, which sounded very pleasing to the ear [16], [17].

In the late 1930s the Hammond Novachord was created, which also had formant filters for overtone modification and envelope shaping to produce tones like those of wind and string instruments [18], [19].

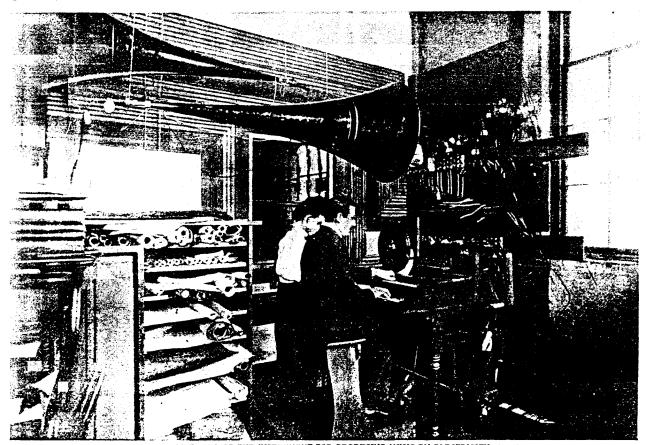
An interesting means of sound modification is found in the Electrochord by Oscar Vierling [16] and in the Miessner piano [20]–[23]. It was found that tonal qualities could be dramatically modified by changing the location of pickups (in this case capacitive) along the strings. For instance, when picking up the oscillations at the midpoint, all even harmonics would disappear, leaving only the odd harmonics, thus producing a hollow, clarinetlike sound. Placing the pickup at one third of the string's length, the third, sixth, and so forth harmonics would be canceled, and pickup points at

^{*} Based on papers presented at the Midwest Acoustics Conference, Chicago, 1981 April 25 and at the 70th Convention of the Audio Engineering Society, New York, 1981 Oct. 30-Nov. 2). Manuscript received 1984 June 18.

other locations of the string length would produce yet different harmonic structures.

The Electrochord as well as the Miessner piano were built without sounding boards, thus eliminating their damping effect and producing tones with longer decay times. The same was true for the Les Paul guitar, and it might be interesting to learn that Paul invented the solid-body guitar as far back as 1927 [24]. In his early experiments Paul used the magnets of the old-style headphones, which were equipped with steel diaphragms as membranes. The Gibson guitar evolved in 1941, and it has since been associated with an incredible number and variety of sound modification devices and methods, some of which will be discussed in more detail.

From the beginning one important means of sound modification has been the tremolo and the vibrato, the tremolo being an amplitude modulation [25] and the vibrato a frequency modulation. It is interesting to note that post-source frequency modulation initially posed a problem. For this reason the first Hammond organs were equipped with means for amplitude modulation or tremolo.


In the mid-1940s a delay line with variable inductors was invented by Hanert, and after this a different type of variable delay line with a number of delay taps and a capacitive scanner was incorporated in the Hammond organ (Figs. 3 and 4) [26], [27]. By combining direct and the frequency-modulated signals, a type of choral effect was produced [28]. This laid the foundation for today's phasers. In the mid 1950s W. C. Wayne, Jr., proposed and built a purely electronic choral tone modulator for the Baldwin organ [29]. A different approach for choral tone modulation was taken by D. L. Bonham in the early 1960s [30], after he had created successfully a purely electronic vibrato modulator in 1958 [31].

A unique contribution in sound modification devices was made by Homer Dudley through his creation of the voder and the vocoder in the late 1930s.

The voder [32] was a keyboard-operated instrument controlling a number of bandpass channels for simulating the resonances of the human voice. With the addition of a tone source called the buzz source and a noise source called the hiss source, vowels and consonants of a speaker were imitated.

The system became even more exciting when the voder, being an encoder, was combined with a decoder. This combination was called the vocoder, which comprised an analyzer for analyzing the speech and a synthesizer for remaking the same speech [33], [34].

For accomplishing this, the audio range was sliced up into a number of bandpass channels in the analyzer, which correspond to an equal number of bandpass channels in the synthesizer. In each analyzer channel

THE REYBOARD OF THE INSTRUMENT FOR PRODUCING MUSIC BY ELECTRICITY the same is a key set in motion the current of a generator of a particular intensity. The vibrations make tones in a telephone receiver at the other end of a wire connecting the product of a vibrations in the intensities of the different generators produce the differences in the tones. The music may be heard with equal volume in the room odd of a telephone sevency miles away

. Fig. 1. Playing console of Cahill Telharmonium (courtesy Tom Rhea).

a control voltage is generated with what we now call an envelope follower. This control voltage was then fed to the control voltage input of a voltage-controlled amplifier in the corresponding synthesizer channel.

By listening to the recordings of the Dudley vocoder one notices that not only the speech articulation is being remade but also the speech inflection, which clearly indicates the presence of a pitch extractor—that works—as well as a pitch-to-voltage converter and a voltage-controlled oscillator. In the closing section of this article a few more aspects, modifications, and applications of the vocoder will be discussed.

Thus far it has been observed that one important element in sound modification devices is represented by a variety of filters, such as the formant filters of the Trautonium and the Hammond Novachord, the complementary tone filters of the Warbo Formant organ, and the bandpass filters of the vocoder. Another instrument with strong formant filters was the Bode Melochord (Fig. 5) (preceded by the Melodium) [35], which was built for several major broadcast stations in West Germany by the late 1940s and the early 1950s. The Melochord was also equipped with circuitry for the control of attack and decay envelopes, vibrato, and the capability to play traveling formants, the frequency of which was keyboard controlled. In the Melochord for the Stockhausen Studio in Cologne the modular concept was adopted, by which external ring modulators, echo chambers, and the like could be included in the system

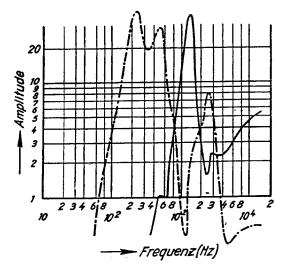


Fig. 2. Complementary filter responses of Warbo Formant organ.

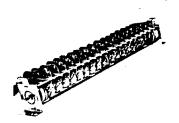


Fig. 3. Delay line for Hammond organ vibrato unit.

[36]–[38].

A unique instrument combining many of the means of tone generation and sound modification known at that time was the RCA synthesizer (Fig. 6), which was created under Harry F. Olson. It made its debut in 1955 [39]-[41]. The RCA synthesizer is controlled by preprogrammed punched tape. It has such features as digitally controlled filters, control of attack and decay envelopes, digitally controlled pitch and waveshapes, random noise generation, and frequency and amplitude modulation.

Around the same time Les Paul became famous with his multitrack guitar recordings, using tape speed transposition and the repetition effect. The well-known piece "Whispering" was done in the early 1950s. Besides being an outstanding performer, Paul is an outstanding innovator. He introduced the multitrack recorder [eight tracks on 1-inch (25-mm) tape] in cooperation with Ampex. He also created Sel Sync. His repetition effect was done with a five-head recorder. His tape speeds were initially 60 and 30 in/s (1.52 and 0.76 m/s) and later reduced to 30 and 15 in/s (0.76 and 0.38 m/s). It was Paul who introduced the RIAA curve.

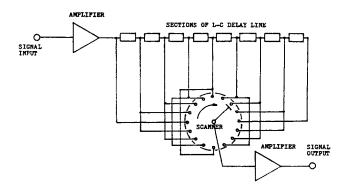


Fig. 4. Basic diagram of Hammond vibrato unit.

Fig. 5. The author tuning his first Melochord (1947).

Prior to the tape era, Paul created the repetition effect on 16-in (406-mm) disks with five playback pickups in the same groove with the cutting head. This was in 1941.

Les Paul, of course, stimulated many innovators, and due to his success encouraged them to work in the field of new sound effects. His influence in many areas is felt to this day. The author was so impressed by his work that he later developed a sound modification system consisting of a number of electronic modules, assigned to two separate outputs through a multiple-head tape loop device [42] (Fig. 7). These modules, which will be dealt with in more detail, also included a ring modulator.

The ring modulator was at the time a relatively littleknown sound modification device, mainly used in single-sideband communication systems. The main reason was that up to the mid- or late 1950s it was known as a switching circuit, which would have sounded too harsh to be usable for sound modification. It was only after ring modulators were built with diodes, which operate in the square law region of their transfer function (as was the case with certain germanium diodes), that they started to perform as four-quadrant multipliers and became musically interesting (Fig. 8) [43], [44].

The author's modular sound modification system was built in late 1959 through 1960. In it the multipliertype ring modulator and other sound modifying devices were used, such as an envelope follower, a tone-burstresponsive envelope generator, a voltage-controlled amplifier, formant and other filters, mixers, a pitch extractor, a comparator and frequency divider for the extracted pitch, and a tape loop repeater with dual channel processing [45], [46].

The modular concept proved attractive due to its versatility, and it was adopted by Robert Moog when he created his modular synthesizer in 1964. This synthesizer included a variety of sound modification devices and system modules, such as voltage-controlled filters [47], envelope generators, voltage-controlled amplifiers, and sample/hold circuits. At a later date Bode ring modulators and Bode frequency shifters (which will be described in more detail) were also added to the Moog line.

By the late 1960s sound effect devices such as the wahwah appeared in the popular entertainment field.

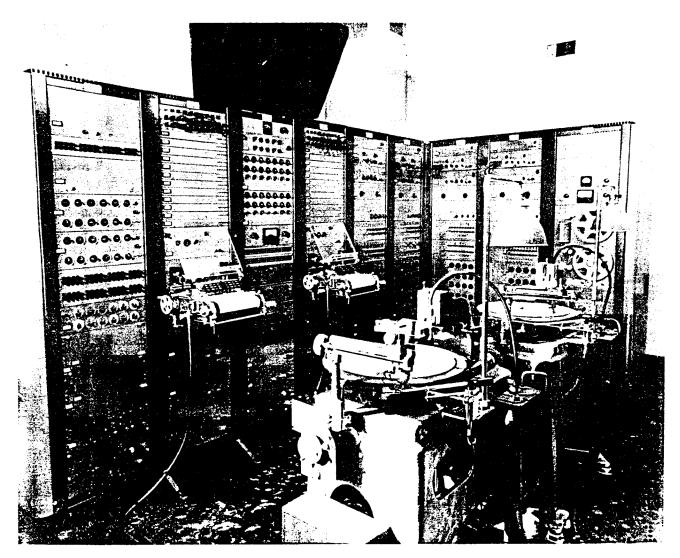


Fig. 6. RCA synthesizer (courtesy Tom Rhea).

The first successful wahwah was reported to have been the "Cry Baby," which originated in England around 1965. It worked with germanium transistors. A quite effective wahwah was, of course, the Moog voltagecontrolled low-pass filter capable of very pronounced resonances, which could be actuated by a voltage control pedal. It is understood that the Mutron, an envelopeactivated voltage-controlled filter, was widely used during the 70s. [48].

Another popular sound effect device, which started in the mid 1960s, is in the category of the so-called fuzz boxes. The story goes that the fuzz started with Jeff Beck making a guitar recording by overdriving a deficient preamplifier of his tape recorder.

The first successful fuzz boxes include the VOX distortion booster, which plugs into a guitar and which originated in England in 1964. At around the same time the Arbiter fuzz face appeared on the scene [49]. The use of the fuzz effect is quite popular with guitars, and it can be enhanced by extending the sustain time with compression circuits [50].

There are, of course, quite a number of other wahwahs and fuzz boxes on the market, all of which cannot be mentioned within the scope of this publication.

Further electronic sound modification devices that have been successful to this date are flangers and phasers, and it is of interest to trace the history of their discovery and design [51], [52].

The flanging effect can be commonly observed outdoors, when a jet flies overhead, and the direct sound is summed in the ear of the observer with the sound reflected from the ground, resulting in the cancellation of certain frequencies and producing the comb filter effect, commonly referred to as "jet sound."

In the history of recording the story goes that with the intent to achieve double tracking with two recorders

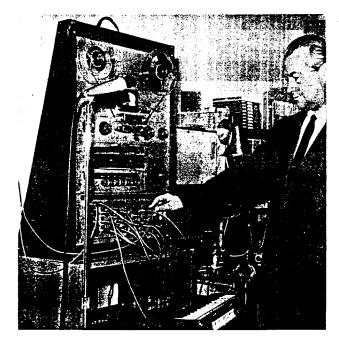


Fig. 7. Modular sound modifier by the author (1960). Photo reprinted from Electronics, 1961, Dec. 1. Copyright © 1961, McGraw-Hill Inc. All rights reserved.

with slightly different speeds on the piece "The Big Hurt," the flanging effect was obtained by accident.

Paul created the flanging effect in "Mamie's Boogie" with two disk recorders, one of which had variable speed control (1945). At a later time, with the availability of tape recorders, flanging was done with two tape recorders, one of which had variable speed control (Fig. 9). A famous recording made this way was "Itchycoo Park" by Small Faces in the late 1960s [24].

After the theory of flanging had been established for some time and the industry was waiting for usable integrated circuits to make delay lines of sufficient quality and delay time [53], Richard Factor of Eventide demonstrated electronic flanging with a practically "continuously" variable digital delay line at the Spring Convention of the Audio Engineering Society in 1973 [54]. Prior to that, Eventide had been experimenting with bucket brigade devices for several years [55]– [57].

The Eventide instant flanger was introduced in the spring of 1975. It was later followed by the pitch change module for the 1745M digital delay line and then by the model H910 harmonizer, which was the first usable transposing device.

In contrast to the work of Factor of Eventide, Steven St. Croix of Marshall Electronic concentrated on the flexibilities of a modulated delay line, which he called the time modulator and for which new analog delay integrated circuits were developed. With this time modulator a large variety of effects were introduced, such as automatic double tracking, automatic triple tracking, negative flange, positive flange, resonant flange, "negative killer flange," positive killer flange," vibrato, arpeggio, pitch quantiziing, two-drum slaps, reverb with detune, and others. The Marshall time modulator was introduced to the trade in 1976.

Generally speaking, in flangers a comb filter effect

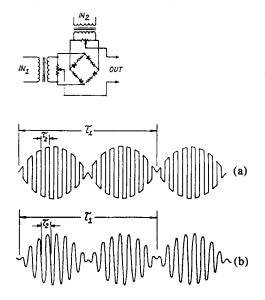


Fig. 8. Switching and multiplier-type ring modulators and output wave shapes. (a) With chopper-type operation (silicon diodes). (b) With multiplier-type operation (germanium diodes).

BODE

is produced where the spacing of the peaks and notches equals the reciprocal of the delay time. In contrast, in phasers, depending upon the design parameters used for the phase filter, the spacing of the peaks and notches can be made to cover equal musical intervals [58]. Allpass phase filters have been known for analog computers roughly since the 1940s. So basically the technology would have been available to build phasers at that time. According to one report the first user of phasers was Dodie Fields in the mid 1950s. The Countryman phase shifter became known in the early 1970s. One of the successful phasers of the early times was the Maestro phaser, designed by Tom Oberheim.

On the Moog 12-stage phaser the number of phasing stages as well as the number of stages included in the feedback loop could be selected. The Bode Barberpole phaser (introduced in 1981) is capable of unidirectional (infinite) movement of the comb filter peaks and notches.

A very important ingredient in sound modification is the addition of reverberation to program material. In the old days, that is, in the 1930s, one used echo chambers for this purpose, and with very good results. But they wre expensive and space consuming. Then in 1941 came the invention of the Hammond spring reverberation device, which was incorporated in his organ tone cabinet [59]. It also worked well in studios, and its offspring are still popular. A different approach for producing reverberation effects was taken by D. W. Martin of the Baldwin Piano Company, who used coil springs, which were mechanically coupled with the loudspeaker cone [60].

Another way to produce reverberation effects successfully is, of course, with tape repeaters. After the advent of useful delay lines artificial reverberation became feasible with tapped delay lines. Schroeder of Bell Laboratories proposed a system for natural reverberation, incorporating a number of delay lines and feedback configurations (Fig. 10) [61], [62]. One of the most successful reverberation devices still in use today is the EMT plate reverberation device.

As was mentioned before, post-source frequency modulation is very important to enhance certain program material. The most famous device to produce Doppler effect vibrato by rotating loudspeakers was and is the Leslie tone cabinet. A purely electronic system for simulating moving sound sources was described by J. M. Chowning in 1971 [63], who proposed the use of all of the required parameters, including amplitude modulation, frequency modulation, and reverberation

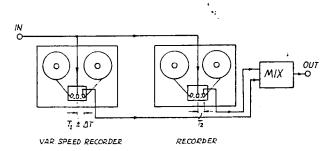


Fig. 9. Flanging setup with two tape recorders.

in four independent channels to achieve this and other moving sound effects. Prior to this a system for "monaural-binaural transmission of sound for producing a Haas effect" had been proposed by D. W. Martin in 1959 [64].

Different and still relatively little-known sound modification devices are frequency shifters, which are capable of producing quite startling effects. The first frequency shifters were introduced in the 1950s by Heck and Buerck in West Germany [65]. They operated on the principle of heterodyning the program material, for instance through a 20-kHz carrier into a higher frequency range passing one of the sidebands produced through a single-sideband filter (for instance, passing 20 kHz to 30 kHz) and reheterodyning these frequencies back into the audio range with a carrier that deviated from the first (20-kHz) carrier by the amount of frequency shift ultimately desired [66].

A different variety of frequency shifters now successfully in use operates on the phase shifter and multiplier principle [67], [68]. A dual phase shifter modifies the program signal to produce output signals, which are in 90-degree phase relationship relative to each other over a range from 20 Hz to 20 kHz. These feed into the first inputs of two multipliers. A quadrature oscillator produces sine/cosine-related shift frequencies, which are fed to the second inputs of the two multipliers. The multiplier output signals are typically those of ring modulators. Due to their phase relationships one of the sidebands is suppressed when they are summed in the output circuit, and the other is doubled in amplitude, thus producing a frequency-shifted signal.

Frequency shifters can be used for a variety of interesting effects, including the spiraling echo effect, which is obtained by placing this sound modifier in the feedback loop of a delay circuit (or tape delay). In cooperation with Robert Moog a special model was created in 1973 [69]-[70], which has an exponential control voltage to amount-of-shift interface, so it has a keyboard tracking capability. This means that unusual timbres set up with the frequency shifter can be maintained over the entire keyboard range.

In the 1973 model a beat frequency quadrature oscillator was used, which was later replaced by a wide-

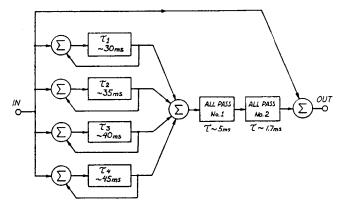


Fig. 10. System for natural sounding reverberation (after Schoeder [61]).

range quadrature oscillator (0.02 Hz to 5000 Hz) to improve the frequency stability (Fig. 11) [71].

A different category of sound modifiers is that of detuning devices. The harmonizer by Eventide already has been mentioned. Other products of this kind are manufactured by Lexicon and MXR to name just a few. The basic principle of these transposers was first demonstrated in the late 1940s on the Springer apparatus, a machine with multiple rotating tape heads, which is attached to a standard tape recorder.

Another sound modifier of the electromechanical category is the Phonogen, which has a circular arrangement of 12 capstans to change the tape speed within the 12 steps of the tempered scale.

The pitch-transposing idea first executed by Springer has stayed the same in today's transposing devices, and the basic concept is that of slicing up the program material into a series of splices of sufficiently short duration and to compress or expand these slices before recombining them (Fig. 12).

In contrast to using the slicing method for pitch transposition, where smooth transition is a main objective, it can also be applied for the opposite purpose, namely, to change the sound with each new slice. For achieving this effect, the sample/hold method is applied by assigning different sound parameters (for instance, different filter frequencies) to each segment.

As mentioned before, filtering represents a very basic method of sound modification. A unique kind of filter worth mentioning is the string filter by Moog, comprising four groups of nine very selective filters which can be activated in different configurations for strongly accertuated tone colorings, including those of strings. When all filters are activated, a total of 36 resonators cover the performance range.

Finally, in closing, a few more details relating to vocoders will be discussed.

Long before Dudley's vocoder became known, there was an electromechanical driver unit, known as Sonovox, which imparted vibrations in the range of voice frequencies to the vocal cavity system when held against the area of the larynx, thus substituting for the vocal cords and making "semisynthesized" speech possible. This in a sense was the forerunner of the artificial larynx still in use today. Another interesting device, which preceded today's vocoders, was called "the bag," with the name of Bob Heil associated with it [72]. It could be nicknamed "the poor man's vocoder." It consisted of a loudspeaker driver system with a vinyl tube from this driver feeding into the mouth of the performer, who then spoke vowels with the frequencies supplied by the driver into a microphone. Although very effective on vowels, the use of this device was quite limited for

Fig. 11. Bode frequency shifter model 735 Mark II.

intelligible speech.

After Dudley, Robert Moog was the first designer of a vocoder using semiconductor technology and active filters. It was built for the electronic music studio of the University of Buffalo in 1968. After that other vocoders followed. Those by Sennheiser and EMS [73], [74] became known in the late 1970s. In 1977 the author developed a vocoder that deviated from the classical communication-type concept employed by Dudley and others and was aimed toward the use of direct performance (and entertainment) applications (Fig. 13). This model features a direct bypass for the consonant frequencies since it was evident that only the vowel frequencies had to be encoded and decoded and not the consonants, which did not have to change anyway. This system, which was patented [75], resulted in an instrument of superior intelligibility, presence, and fast response (Fig. 14). After these vocoders a number of other products in this category appeared on the scene, such as the Korg, the Electroharmonix, the Syntovox, and the Roland, all of which use the conventional approach.

3 CLOSING REMARKS

It was the purpose of this presentation to highlight those developments in the field of electronic sound modification that were deemed to be most basic and significant. It will have been observed that some of the principles used today can be traced back to the very early days of experimentation, and that many of them have survived all phases of the technological evolution.

4 ACKNOWLEDGMENT

The author wishes to express his appreciation to those who have supported this work. His special thanks go to Dave Luce and Tom Rhea for their help in providing the documentation.

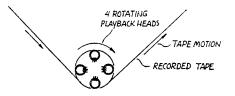


Fig. 12. Basic playback configuration of Springer device.

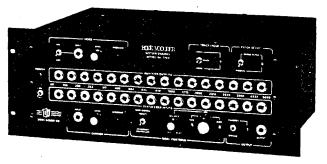


Fig. 13. Bode vocoder model 7702 with 16 analyzer output and 16 synthesizer input jacks for cross patching.

BODE

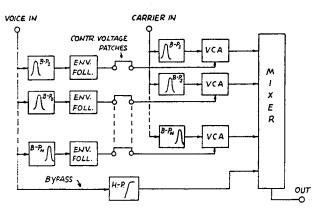


Fig. 14. Vocoder with consonant bypass.

5 REFERENCES

[1] T. Cahill, U.S. patent 520,667 (applied for in 1895).

[2] T. Cahill, "The Generating and Distributing of Music by Means of A. C. Generators," *Elec. World*, p. 519 (1906).

[3] T. Cahill, "The Telharmonium," *Elec. World* (1906).

[4] T. Cahill, "Music by Electricity," M. Melius World's Week, vol. 12, pp. 7660-7663 (1906 June).

[5] T. Cahill, "The Cahill Telharmonium," Elec. World (1906).

[6] "Apparatus for the Electric Generation and Transmission of Music," *Sci. Amer.*, vol. 96, pp. 205, 210-221 (1907 Mar. 9).

[7] W. C. Woodland, "Musical Problem Solved by the Telharmonium," *Sci. Amer.*, vol. 96, p. 271 (1907 Mar. 30).

[8] T. Rhea, "The Cahill Telharmonium, Part I," Contemp. Keyboard (Electronic Perspectives), vol. 3, p. 47 (1977 Feb.).

[9] T. Rhea, "The Cahill Telharmonium, Part II," Contemp. Keyboard (Electronic Perspectives), vol. 3, p. 55 (1977 Mar.).

[10] E. Peterson, "The Rich History of the Electronic Organ," *Keyboard*, pp. 32–36 (1983 Nov.).

[11] O. Sala, "Das neue Mixtur Trautonium," Musikleben, vol. 6, pp. 346-348 (1953 Oct.).

[12] H. Gensmer, "Das Mixtur Trautonium," Musikleben, vol. 7, pp. 245-247 (1954 July-Aug.).

[13] W. Greiser, "Das Mixtur Trautonium," *Musica*, vol. 12, pp. 307-308 (1958 May).

[14] F. Trautwein, "The Electronic Monochord," Tech. Hausmitt. des Nordwestdeutschen Rundfunks, vol. 6 (1954); transl. by the National Research Council of Canada, Ottawa.

[15] T. Rhea, "Harald Bode's Four Voice Assignmant Keyboard (1937)," Contemp. Keyboard (Electronic Perspectives), p. 89 (1979 Dec.).

[16] H. Bode, "Bekannte und neue Klänge durch elektrische Musikinstrumente," *Funktech. Monatsh.*, no. 5, p. 67 (1940).

[17] H. Bode, "European Electronic Music Instrument Design," J. Audio Eng. Soc., vol. 9, p. 267 (1961 Oct.).

[18] "Novachord," Electronics (1939 Nov.).

[19] "Pianoless Piano: Hammond Electrical Novachord Mystifies Musicians," Newsweek, vol. 13, p. HISTORY OF ELECTRONIC SOUND MODIFICATION

36 (1939 Feb. 20).

[20] "Piano with a Whole Band in It: B. F. Miessner's Electronic Piano," *Lit. Digest*, vol. 115, p. 23 (1933 Mar. 25).

[21] B. F. Miessner, "The Electronic Piano," Proc. Music Teachers Natl. Assoc., pp. 259–272 (1937).

[22] B. F. Miessner, "Electronic Piano Produced Commercially," *Electronics* (1937 Nov.).

[23] T. Rhea, "B. F. Miessner's 'Stringless Piano'," Contemp. Keyboard (Electronic Perspectives), p. 62 (1978 Apr.).

[24] Interviews of Les Paul by the author in the spring of 1981.

[25] M. Z. Mroz, "Electrical Musical Instrument (Electro-Mechanical Tremolo Circuit)," U.S. patent 2,245,354 (1941 June 10).

[26] J. M. Hanert, U.S. patent 2,509,923 (applied for in 1946) (actually manufactured system for producing choral tone effect).

[27] J. M. Hanert, "Electronic Musical Apparatus (L-C Delay Line with Variable Inductors for Post Source Vibrato Modulation)," U.S. patent 2,382,413, (1945 Aug. 14).

[28] J. M. Hanert, U.S. patent 2,498,367 (applied for in 1944) (proposed system for producing choral tone effect).

[29] W. C. Wayne, Jr., "Audio Modulation System (Choral Tone Modulator)," U.S. patent 3,004,460 (1961 Oct. 17).

[30] D. L. Bonham, "Electrical Music System (Choral Tone Modulator)," U.S. patent 3,083,606 (1963 Apr. 2).

[31] D. L. Bonham, "Vibrato Circuit Comprising a Bridge Having Non-Linear Impedance Elements," U.S. patent 2,988,706 (1961 June 13).

[32] H. Dudley, "System for the Artificial Production of Vocal and Other Sounds (Voder)," U.S. patent 2,121,142 (1938 June 21).

[33] H. Dudley, "The Vocoder," *Bell Labs. Rec.*, vol. 17, pp. 122–126 (1939).

[34] H. Dudley, "The Vocoder," J. Acoust. Soc. Am., vol. 11, no. 2, p. 169 (1939).

[35] T. Rhea, "Bode's Melodium and Melochord," Contemp. Keyboard (Electronic Perspectives), p. 68 (1980 Jan.).

[36] H. Bode, "The Melochord of the Cologne Studio for Electronic Music," *Tech. Hausmitt. des Nordwestdeutschen Rundfunks*, vol. 6 (1954); transl. by the National Research Council of Canada, Ottawa.

[37] H. LeCaine, "Electronic Music," *Proc. IRE* (1956 Apr.); includes description of Bode Melochord of Studio for Electronic Music at Cologne.

[38] W. Meyer-Eppler, "Which Possibilities Exist for the Meaningful Application of Electronic Music Instruments?" in *Musical Acoustics, Proc. 1st ICA-Congr. Electro-Acoustics* (Delft, 1953); features the Bode Melochord of the Cologne Electronic Music Studio.

[39] H. F. Olson and H. Belar, "Electronic Music Synthesizer," J. Acoust. Soc. Am., vol. 27, pp. 595-612 (1955 May).

[40] E. T. Canby, "Music Synthesizer (RCA SYN)," Audio, vol. 40, pp. 64-65 (1956 May).

[41] M. Babbit, "An Introduction to the R.C.A. Synthesizer," *Music Theory*, vol. 8, p. 251 (1964 winter). [42] H. Bode, "Electronic Apparatus (Modular Sound Modification System with Tape Repeater)," U.S. patent 3,069,956 (1962).

[43] H. Bode, "The Multiplier Type Ring Modulator," *Electron. Music Rev.*, no. 1 (1967).

[44] T. Oberheim, "A 'Ring Modulator' Device for Performing Musicians," presented at the 38th Convention of the Audio Engineering Society, J. Audio Eng. Soc. (Abstracts), vol. 18, p. 334 (1970 June), preprint 708.

[45] H. Bode, "Sound Synthesizer Creates New Musical Effects," *Electronics* (1961 Dec. 1).

[46] H. Bode, "A New Tool for the Exploration of Unknown Electronic Music Instrument Performances," J. Audio Eng. Soc., vol. 9, p. 264 (1961 Oct.).

[47] R. A. Moog, "Voltage Controlled High Pass/ Low Pass Filter for Audio Signal Processing," presented at the 17th Convention of the Audio Engineering Society, J. Audio Eng. Soc. (Abstracts), vol. 13, p. 260 (1965 Jul.), preprint 413.

[48] "Effects Devices Part 2, Volume and Wah-Wah Pedals," Contemp. Keyboard, p. 16 (1979 Apr.).

[49] "Effects Devices Part 3, Envelope Followers, Noise Gates and Fuzz Tones," *Contemp. Keyboard*, p. 22 (1979 June).

[50] C. Anderton, "For Your Guitar, a Compression Sustainer," *Pop. Electron.*, vol. 30, pp. 63-64 (1969 May).

[51] "Effects Devices Part 1, Phasers and Flangers," Contemp. Keyboard, p. 20 (1979 Feb.).

[52] C. Anderton, "Sound Modification Devices for Keyboards: An Introduction," *Contemp. Keyboard*, p. 9 (1978 July).

[53] B. Blesser and F. F. Lee, "An Audio Delay System Using Digital Technology," J. Audio Eng. Soc., vol. 19, pp. 393-397 (1971 May).

[54] R. Factor and S. Katz, "The Digital Audio Delay Line," *db Mag.*, p. 18 (1972 May).

[55] F. Hinkle, "Bucket Brigade Shift Register Generates Constant Phase Delay," *Electronics*, p. 110 (1964 July 11).

[56] W. S. Boyle and G. E. Smith, "Charge Coupled Semiconductor Devices," *Bell Sys. Tech. J.*, vol. 49 (1970 Apr.).

[57] R. Buss, "CCD's Improve Audio Systems Performance and Generate Effects," *EDN*, p. 55 (1977 Jan. 5).

[58] B. Bartlett, "A Scientific Explanation of Phasing (Flanging)," J. Audio Eng. Soc. (Letters to the Editor), vol. 18, pp. 674-675 (1970 Dec.).

[59] L. Hammond, "Electrical Musical Instrument (Coil Spring Reverberation)," U.S. patent 2,230,836 (1941 Feb. 4).

[60] D. W. Martin and A. F. Knoblaugh, "Loudspeaker Accessory for the Production of Reverberant Sound," J. Acoust. Soc. Am., vol. 26, pp. 676-678 (1954 Sept.); coil springs mechanically coupled with speaker cone.

[61] M. R. Schroeder, "Natural Sounding Artificial Reverberation," J. Audio Eng. Soc., vol. 10, p. 219 (1962 July).

[62] M. R. Schroeder and B. F. Logan, "Colorless Artificial Reverberation," J. Audio Eng. Soc., vol. 9, p. 192 (1961 July).

[63] J. M. Chowning, "The Simulation of Moving Sound Sources," J. Audio Eng. Soc., vol. 19, pp. 2– 6 (1971 Jan.).

[64] D. W. Martin, "Monaural-Binaural Transmission of Sound for Producing a Haas effect," U.S. patent 2,879,683 (1959 Mar. 31).

[65] L. Heck and F. Buerck, "Klangumformungen in der Rundfunkstudiotechnik, insbesondere durch Anwendung der Frequenzumsetzung," *Elektron. Rundsch.*, p. 1 (1956 Jan.).

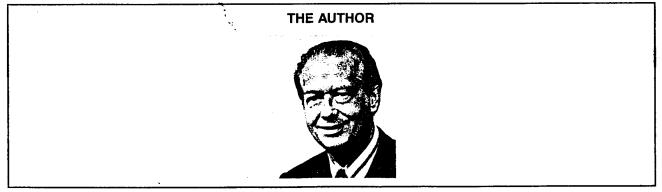
[66] H. Bode, "Solid State Audio Frequency Spectrum Shifter," presented at the 17th Convention of the Audio Engineering Society, J. Audio Eng. Soc. (Abstracts), vol. 14, p. 66 (1966 Jan.), preprint 395.

[67] T. Rhea, "Harald Bode's Frequency Shifters and Vocoders," *Contemp. Keyboard (Electronic Perspectives)*, p. 86 (1980 Feb.).

[68] H. Bode, "Frequency Shifters for Professionals," db Mag. (1976 Mar.).

[69] H. Bode and R. A. Moog, "A High-Accuracy Frequency Shifter for Professional Audio Applications," J. Audio Eng. Soc., vol. 20, pp. 453-458 (1972 July/ Aug.).

[70] H. Bode, "Apparatus for Producing Special Audio Effects Utilizing Phase Shifting Techniques (BFO Frequency Shifter)," U.S. patent 3,800,088 (1974 Mar. 26).

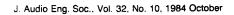

[71] H. Bode, "Multiphase Signal Oscillator (Quadrature Oscillator for Frequency Shifter)," U.S. patent 4,145,670 (1979 Mar. 20).

[72] C. Anderton, *Guitar Gadgets* (Amsco Publications, 1983), chap. 6, p. 98.

[73] N. Condron and H. Ford, "EMS Vocoder," Studio Sound, p. 98 (1977 July).

[74] B. Moog, "Vocal Sounds, Part II: Vocoders," Contemp. Keyboard (On Synthesizers), p. 54 (1978 May).

[75] H. Bode, "Analog Speech Encoder and Decoder (Bode Vocoder)," U.S. patent 4,158,751 (1979 June 19).



Harald Bode, a graduate of the University of Hamburg, Germany, and a postgraduate of the Technical University of Berlin (Heinrich Hertz Institute), became active in electronic music instrument design in the mid-30s. His creations include the Warbo Formant organ (1937), the Melodium (1938), the Melochord (1947– 1953), most widely known through the work of Stockhausen at Cologne, West Germany. Further instruments include the Polychord (1949), the Bode organ (1951 later known as the Estey electronic organ), the concert

ting a la an

model of the Clavioline (1953), and a modular synthesizer/sound processor (1959–1960). The Bode ring modulators and frequency shifters (1961) are found in many American and foreign studios. The Bode Vocoder, deviating from conventional concepts, was created in 1977.

Bode holds more than 50 US and foreign patents. He served as AES session chairman for music and electronics in 1962 and 1964. He is the head of the Bode Sound Company of North Tonawanda, New York.

0

List of Tape Recordings for MAC 81 by Harald Bode ______ 1.- Trautonium, advanced model, 1961 recording. (Remi Gassmann's Music to the Ballet, as produced by The New York City Ballet Company under the direction cf George Balanchine). 2.- Hammond Novachord, Tea for Two, played by Fred Feibel. 3.- Homer Dudley Vocoder, 3 segments. 4.- Dual Formants of Melcchord, Hamburg (1949) 5.- Sound-on-Sound with Melochord Hamburg. 6.- Travelling Formant a la Melochord Cologne (early 50's) 7.- RCA Synthesizer (1955) 8.- Modular Sound Modifier a) Ring Modulator, · b) A-B Echo, (1959/60)c) Percussion Follower, d) Voice triggered melody generator, e) Pitch Extractor w. octave coupler, 9 - Flanging with white noise. 10.- Marshall Time Modulator a) Radical time compression; Billy Thorpe: Children of the sun b) Multitrack multiple uses of time modulator; Stevie Wonder: Ebony Eyes. (Platinum record) c) Resonant flange; John McLaughlin: Phenomenon: Compulsion. d) Pitch quantising, e) Echo, Pitch shift. 11.- Moog 12-stage phaser w. feedback, 12.- Bode Frequency Shifter: a) Bell sounds through exp. control. b) Spiraling echo 3 samples. c) Percussion follower for pitch change on drums. 13.- Sample/Hold used on voltage controlled filter. 14.- Moog string filter. 15.- "Poor' man's Vocoder" (the "bag"). 16. - Bode Vocoder: "a) Walter Cronkite singing the news, " (Nan % b) Funkytown, (c) Discover Magazine, d) Atari. # alt. 17.- Infinite phasing on Barberpole PhaserTM: a) Pink noise phased up, b) Chord on Polymoog phased up c) Phasing with step function on chord sequence, d) Complex phasing pattern on Bass guitar. U. - EXTRA : . COMPUTER SYNCHRONIZES SEQUENCER 2 B'PHASER 23:12 · 6 MINSUTE PIECE

List of Sticke: For MAC 81

- A

1. Cahill Done wheel 2. Cahill mixer & filter 3. Lelharmonium, avusole. to lelharmonium, instale partonium 1930 version 5. latest version 60 1. Coseup of mantonium 8. Magar vikiato To theger at his organ 10. Dammond at his organ 11. Schematic of Tone wheel 12. Complementary filters of Warbo tormant Organ 13. Mammond Wovachord 14. Multiple location string pridays at Electrodoval 15. Electrochord by Vierling, open 16. Floctrochord, clused 17. Ben Miessmer at his piano 18 . Electromechanical trendo on early Alammond Organ 19. Flectromechanical vibrato on Lolovox 20. Vibrato Dolay Line with variable Inductors 21. Vibrato Delay Line Little electrostatic Snammer 22. Physical Appearance of Manmoud Delay Line, 23. Voder Vatent by Homer Indley "He Voder kyboard, front wiew-25. Voder console, overall view.

REC # 1

RE(#2

REC#3

List of Dide. For MAC 81

- K -

26. Melochord, open (NWDR Hamburg) 27. Melochord of Cologne Andio REC # 4 RE(# 5 23. Anelodiord in Cologne Midio REC# 6 29. RCA Synthisizer REC# 7 30 0 31. Ring Modulator used by Hede & Burde 32. "Ward" and "Joft "King Phodulator 33. Performance curves of Soft (Multiplier) Ring Mod. 34. Modular Lound Processor Hotel view RE(# 8 Schematic, general 35. **ii.** . li (i " setup for special form offed 36. " 4 " Patent traving. 37. . ú 38. Thuog Synthesizer "Jet round" 390 REC # 9 Producing flanging effect with disce 40. 41. Basic Configuration of Phasers & Flangers Basic Systems Blement for Fhasing / Planging Lolay Line RE(#10 42. 43. Basic Comb tilter Respondes 44. 3 Generations of all Pass Phase thiftees RE(# 11 450 Echi Chamber 46. 47. Dammond foring Reverberation Patent 48. Tapped Delay Line for artificial Reverberation 49. System for Natural Sounding Bit ficial Reverb (Schouder) 50 . Doppler Effect Vibrato (Leslie)

HISTORY OF ELECTRONIC SOUND MODIFICATION

by Harald Bode

INTRODUCTION.

The history of electronic sound modification is as old as the history of electronic musical instruments and electronic sound transmission, recording and reproduction.

Means for modifying electrically generated sound have been known since the late 19th century, when Thaddeus Cahill created his Telharmonium.

With the advent of the electronic age, spurred first by the invention of the electron tube and in the more recent decades through the development of solid state devices, an astounding variety of sound modifiers has been created for filtering, distorting, equalizing, amplitude and frequency modulation, doppler effect and ring modulation, compressing, rever-berating, repeating, flanging, phasing, pitch changing, chorusing, frequency shifting, analyzing and re-

I am now going to give a review of some of the highlights of the historical developments, with slides covering the history from 1896 to the present, and with tape recordings covering a time span of more than 40 years of sound modifier developments.

* * * * *

In order to give a most complete account on the history of electronic sound modification, it will be important to include the time span, which preceded the purely electronic era, and also to include some portions of the history of electronic (and electrical) instruments, in which the means for sound modification formed an integral part of the whole system.

A classical case in point is the "Telharmonium" by Thaddeus Cahill, which was built around 1897. This instrument used the principle of additive tone synthesis for sound manipulation and modification. The individual tone colors were built up from fundamentals and overtones, generated in huge dynamos; and for the purpose of generating pure sine waves for this synthesis, the individual generator coils were tuned with capacitors, another means for sound modification.

52 S3, S4

55

\$1

After the melharmonium, and especially after the invention of the vacuum tube, scores of electronic music instruments were invented with more or less outstanding features for sound modification. Among these was the Trautonium, which extensively used SGR1 resonance filters to emphasize selective overtone regions, called formants. R;

58,9

510 511

512

514

In contrast, the German Jörg Mager built an organ like instrument in the early 30's, for which he used loudspeakers of all kinds and shapes to obtain different sounds.

The original work of Thaddeus Cahill formed the foundation for the development of the <u>Hammond organ</u>, which appeared on the scene in the early 30's. Many notable inventions in the field of <u>electronic sound modification</u> are <u>connected</u> with this instrument, which will be discussed later.

In 1937 I created the Warbo Formant organ, which had circuitry for envelope shaping of the tones as well as filters of higher <u>complexity</u> than those used before. It had two sets of filters and a voice assignment keyboard, through which, for instance, voices 1 and 3 could be assigned to the first filter and voices 2 and 4 to the second filter. By making the pass regions of the filters <u>complementary</u>, <u>complementary</u> tone colors could be produced, which sounded very pleasing to the ear.

S13 R2 In the late 30's also the Hammond Novachord was created, which again made use of formant filters for overtone modification and means for envelope shaping to produce tones of wind and string type instruments. R

> A very interesting means for sound modification is found in the Electrochord by Oscar Vierling and the Miessner piano. It was found, that the tonal qualities could be dramatically modified by changing the location of pickups (in this case capacitive) along the strings. For instance, when picking up the oscillations in the center, all odd harmonics would appear. At one third of the length of the string the third, sixth and so forth

> > - 2 -

S15 harmonic would be cancelled, and pickup points at other locations S16, S17 of the string length would produce corresponding results.

The Elctrochord as well as the Miessner piano were built without sounding boards, since these did not anymore serve any useful nurpose. The same was true for the Les Paul guitar, and it might be interesting to learn, that Les Paul invented the solid body guitar as far back as in 1927.... In his early experiments Les Paul used the magnets of the old day type headphones, which used steel diaphragms as membranes. The Gibson Guitar started in 1941, and it has ever since been associated with an incredible number and variety of sound modification devices and methods, some of which will be discussed in more detail. V

From the very beginning one very important means of sound modification has been the tremolo and the vibrato, the tremolo being an amplitude modulation and the vibrato a frequency modulation. It is very interesting to note, that post source frequency modulation initially posed a problem, and that the first <u>Hammond</u> organs in the early 30's were equipped with means for <u>amplitude</u> modulation or tremolo.

At a later time, that was in the mid 40's, a delay line S20 with variable inductors was invented by Hanert, and a different type of variable delay line with a number of delay taps and a <u>capacitive scanner</u> was incorporated in the Hammond organ. By combining the frequency modulated signal with the direct signal, also a type of <u>choral tone</u> effect could be produced and the S22 foundation was laid for todays flangers.

518

519

- 3 -

A tremendous step forward in the field of sound modification devices was taken by Homer Dudley, by his creation of the Voder and the Vocoder in the late 30's.

The Voder was a keyboard operated instrument controlling a number of bandrass channels for simulating the resonances of a speaker. With the addition of a tone source, also called the buzz source and a noise source, also called the hiss source, vowels and consonants of the speaker could be imitated. being on Encoder

The system became even more exciting, when the Voder/was Decoder combined with an Encoder, and this combination being called the Vocoder, which comprised an analyzer for analyzing the speech and a synthesizer for remaking the same speech.

For accomplishing this, the audio range was sliced up into a number of bandbass channels in the analyzer, which correspond to an equal number of bandbass channels in the synthesizer. In each analyzer channel a control voltage was generated in what we now call an envelope follower, which was then fed to the control voltage input of a voltage controlled amplifier in the corresponding synthesizer channel. R

By listening to the recordings of the Dudley Vocoder, it will be observed, that not only the speech articulation is being remade but also the speech inflection, which clearly indicates the presence of a pitch extractor - that worked - as well as a pitch-to-voltage converter and a voltage controlled oscillator.-In the closing portion of today's presentation I am going to deal with a few more aspects, modifications and applications of the Vocoder.

S24 S25

\$23

R3

- 4 -

Thus far we have observed, that one important element in sound modification devices is represented by a variety of filters, such as the formant filters of the Trautonium and the Hammond Novachord, the complementary tone filters of the Warbo Formant Organ and the band pass filters of the Vocoder. Another instrument \$26 R4 with strong formant filters was the Bode Melochord, which was built for several major broadcast stations in West Germany by the late 40's and the early 50's. The Melochord was also equipped \$27 R5 with circuitry for the control of attack and decay envelopes, vibrato and the capability to play travelling formants, the fre-\$28 R6 quency of which was keyboard controlled. In the Melochord for the Stockhausen Studio in Cologne the modular concept was adopted, by which external ring medulators, echo chambers and the like could be included in the system.

> Just for the completion of the record I should mention, that around the same time I created the Bode organ, later known as the Estey electronic organ of the 50's, which used the principle of harmonic tone synthesis. Since it was, unlike the Hammond, purely electronic, it did not need means for post source vibrato Vmodulation. Instead it used synchronized Hartley oscillators with frequency modulation of the master stages.

S-29

 R_7

\$30

A unique instrument combining many of the means of tone generation and sound modification known at that time was the RCA synthesizer, which was created under Harry F. Olson and made R7 its debut in 1955. The PCA synthesizer was (and is) controlled by preprogrammed punched tape. It has such features as digitally controlled filters, control of attack and decay envelopes, digi-

- 5 -

tally controlled pitch and waveshapes, random noise generation and frequency and amplitude modulation.

Around the same time Les Paul became famous with his multitrack guitar recordings, also using tape speed transposition and the repetition effect. The well known piese "Wispering" was done in the early 50's. Besides being an outstanding performer, Les Paul was and is also an outstanding innovator. It was Paul who introduced the multitrack recorder (8-track on 1 inch tape) in He plso infroduced. cooperation with Ampex.as well as the Sel Sync. His repetition effect was done with a 5 head recorder. His tape speeds were initially 60 and 30 ips and later reduced to 30 and 15 ips. It was Paul who created the IRAA curve.

Prior to the tape era Paul created the repetition effect on 16" discs with 5 playback nickups being in the same groove with the cutting head, This was in 1941.

Ies Paul, of course, stimulated many innovators and due to his success encouraged them to work in the field of new sound effects. His influence in many areas is felt to this day.

I personally was so impressed by his work, that I later started work on a sound modification system, which naturally had to have a tape repeater. This modifier also had a number of (modified modules, one of which was a ring modulator.

This, at the time, was a relatively little known sound modification device, mainly known from single sideband communication systems. The main reason was, that up to the mid or late 50's

- 6 -

this device was a switching circuit, which sounded too harsh to be usable for sound modification. Only after ring modulators were built, which operated in the square law region of their transfer function (which was the case with certain Germanium diodes), they started to perform as four quadrant multipliers and became musically interesting.

Late in 1959 through the beginning of 1960 I built a modular sound processor, in which I used these ring modulators and other sound modifying devices, such as an envelope follower, a tone burst controlled envelope generator, a voltage controlled amplifier, formant and other filters, mixers, a pitch extractor, a comparator and frequency divider for the extracted pitch, and a tape loop repeater with dual channel processing. \mathcal{R}

The modular concept proved interesting and useful, and it was adopted by Bob Moog, when he created his modular synthesizer, which was introduced in 1964. This synthesizer included a variety of sound modification devices and systems modules such as voltage controlled filters, envelope generators,

voltage controlled amplifiers, and sample/hold circuits. At a later date also Bode ring modulators and Bode frequency shifters were added to the Moog line. Bode R/M, in U.B. Studie and F/S

- 6ß-

532

\$33

5<u>34</u> 5<u>35</u> 5<u>36</u>

\$37

R8

538

By the mid to late 60's sound effect devices such as the Wahwah found, their entry into the popular entertainment music The first fuccessful Withrels area reported to have been the Gy Bak field. According to information made available to me the first successful Wahwah was the "Cry Baby", which originated in England around 1965. It still worked with Germanium transistors. A very effective Wahwah was, of course, the Moog voltage controlled low pass filter capable of very pronounced resonances, which If is underfood could be actuated by a control voltage pedal. I understand, that the "Mutron", an automatic Wahwah, is the successful sound modifier of this kind teday.

Another popular sound effect device, which started in the mid 60's, is in the category of the so called Fuzz Boxes. The story goes, that the Fuzz started with Jeff Beck making a guitar recording by overdriving a deficient preamplifier of his tape recorder.

The first successful fuzzboxes include the VCX Distortion Beoster, which plugs into a guitar, and which originated in England in 1964. At around the same time the battery operated Arbiter Fuzz Face appeared on the scene.

There are, of course, quite a number of other wahwahs and fuzz boxes and other sound effect devices on the market, which can be uithen the score of this publication which /I have/ not (mentioned, /since it is/ the main purpose of this for the is presentation/ to trace back the history of electronic sound modification rather than to give a catalog listing of everything that is on the market.

- 7 -

Further electronic sound modification devices that have been successful to this date, are in the category of flangers and phasers, and it will be of interest to trace back the history of their discovery and their design.

5'39

\$40

S41

S42

\$43

The flanging effect can be commonly observed outdoors, when a jet flies overhead, and the direct sound and the sound reflected resulting in from the ground are summed in the ear of the observer, preducing the the cancellation of certain frequencies and producing the comb filter effect, most commonly also referred to as the "Jetsound". Ro

In the history of recordings the story goes, that with the intent to produce double tracking with 2 recorders with slightly different speeds on the piece "The Big Hurt" the flanging effect was produced accidentally.

Les Paul produced the flanging effect in "Mamies Boogie" with 2 disc recorders, of which one had variable speed control (1945). At a later time, with the availability of tape recorders, flanging was produced with 2 tape recorders, one of which had variable speed control. A famous recording made this way was "Itchycoc Park" by Small Faces around the late 60's.

After the theory of flanging had been established for some time and the industry was only was waiting for usable integrated circuits to make delay lines of sufficient quality and delay time, Richard Factor of Eventide first demonstrated electronic flanging with a practically "continuously" variable Digital Delay line at the AES Spring convention in 1973. Prior to that Eventide had been experimenting with BBD's for several years.

8 -

The Eventide Instant Flanger was introduced in the Spring of 1975. It was later followed by the Pitch Change Module for the 1745M DDL and then by the Model H910 Harmonizer, which was the first usable transposing device.

In contrast to the work of Factor of Eventide Steven St. Croix of Marshall Electronic concentrated on the flexibilities of a modulated analog delay line, which is called the Time Modulator, and for which new analog delay IC's were developed. With this Time Law Indroduced Modulator a large variety of effects can be produced, such as Automatic Double Tracking, Automatic Triple Tracking, Negative Flange, Positive Flange, Resonant Flange, Negative Killer Flange, Positive Killer Flange, Vibrato, Arpeggio, Pitch Quantising, 2 Drum Slaps, Reverb with Detune and others. The Marshall Time Modulator was introduced to the trade in 1976. Rio V

Generally speaking, in Flangers a comb filter effect is produced, where the spacing of the peaks and notches equals the reciprocal of the delay time. In contrast, in Phasers, depending upon the design parameters used for the phase filter, the spacing of the peaks or notches can be made to cover equal musical intervals. All pass phase filters have been known for analog computers roughly since the 40's. So basically the technology would have been available to build phasers at that time. According to one report the first user of phasers was Dodie Fields in the mid 50's. The Countryman Phase shifter became known in the early 70's. Another successful phaser of the early times is the Maestro Phaser, which was designed by Tom Cberheim.

R10

\$45

- 9 -

Another large number of phasers of all kinds of sizes and price ranges have appeared on the market, and I like to mention the Moog 12 stage Phaser, on which the number of phasing stages as well as the number of stages included in the feedback loop can be selected. R_{II}

RII

546

547

548

\$49

A very important ingredient in sound modification is the addition of reverberation to the program material. In the old days, that is in the 30's, one used echo chambers for this purpose, and with very good results. But they were expensive and space consuming. Then, in 1941 came the invention of the Hammond spring reverberation, which was incorporated in his organ tone cabinet, but which also is very useful in studios, and the offsprings of which are still popular. Another way to successfully produce reverberation effects is, of course with tape repeaters. After the advent of useful delay lines artificial reverberation became feasible with tapped delay lines. Schreeder of Bell Labs proposed a system for Natural Sounding Reverberation, incorporating a number of delay lines and feedback configurations. The most successful reverb device still in use today was the EMT plate reverberation device.

As it was mentioned before, post source frequency modulation is very important to enhance certain program materials. The most famous device to produce Doppler vibrato by rotating speakers was and is the Leslie tone cabinet.

 $\int \zeta /$ The first electronic phase shift vibrato was introduced by Don Bonham in 1958.

- 10 -

Another still relatively little known type of sound modification devices are frequency shifters, although they are capable of producing quite startling effects. The first frequency shifters were introduced by Heck and Eurck in the 50's in Germany. They operated on the principle of heterodyning the program material for instance through a 20 kHz carrier into a higher frequency range, pass one of the sidebands thus produced, through a single sideband filter (for instance passing 20 to 30 kHz) and to reheterodyne these frequencies back into the audio range with a carrier that deviated from the 20 kHz by the amount of frequency shift ultimately desired.

552

A different variety of frequency shifters now successfully SS3 in use, operates on the phase shifter and multiplier principle. A dual phase shifting network modifies the program signal to produce output signals, which are in 90° phase relationship relative to each other over a frequency range from 20 Hz to 20 kHz. These feed into the first inputs of 2 multipliers. A quadrature oscillator produces sine/cosine related shift frequencies, that are fed to the second inputs of the 2 multipliers. The multiplier output signals are those of ring modulators. Due to the phase relationships of the 2 output signals a frequency shifted signal is produced when summing the 2 multiplier outputs.

 R_{12} SS7 Frequency shifters can be used for a variety of interesting effects including the spiraling echo effect. In cooperation with Bob Mong a frequency shifter was created in 1973, which has an

- 11-

exponential control voltage-to frequency shift interface, so it is $\sqrt{58}$ keyboard compatible R_{12}

A different category of sound modifying devices is that of detuning devices. I already mentioned the Harmonizer by Eventide, which now has its companions by Lexicon, MCR and others. The basic principle of these detuning devices was proven in the Springer $I_{M} + L_{L} L_{L} L_{L} + O(S_{-})$ device I_{A} machine with multiple rotating tape heads, which is attached to a standard tape recorder. Another device in the electromechanical category is a circular 12 capstan device to change the tape speed within the 12 steps of the tempered scale. (Phonogene)

559

560

561

5[.]64 *R14*

The pitch transposing idea first executed by Springer has stayed the same in todays electronic transposing devices, and the S62 basic concept is that of **EXEXE** slicing up the program material into a S63 series of splices of sufficiently short duration and to compress cor to expand these slices before recombining them.

As mentioned before, filtering represents a very basic method of sound modification. A unique type of filters, that is worth mentioning, is the string filter by Moog comprising 4 groups of 9 very selective filters, which can be activated in different configurations for interesting tone colorings, including those of strings. When all filters are activated, a total of 36 resonators cover the performance range. $R_{/4}$

Finally, in closing, I want to devote a few minutes to the Vocoders of the present.

- 12 -

to a completely different approach for advieving new sound modification effects is the use of the SAMPLE/HOLD method to slice up the program material and assigning different filter frequencies (for instance) to each slice. / RI3

An interesting device, which preceded today's modern Vocoders, $565 R_{IC}$ was called "The Bag", with the name of Bob Heil associated with it. I also nicknamed it "The poor man's vecoder. It consisted of a speaker driver system with a vinal tube from this driver feeding into the mouth of the performer, who then spoke vowels with the frequencies from the driver into a microphone. Although very effective on vowels, the use of this device was limited for intelligible speech. Incidentally, I experimented with a similar device in the late 40's. R These devices were presided by the JONOVOX in 1929 (explain After Dudley Robert Moog was the first designer of a vocoder 566 with semiconductor technology and active filters, which was built for the electronic music studio of the University of Buffalo in 1968. After that other vocoders followed by Sennheiser and EMS, which became known in the latter part of the 70's. In 1977 I 567 developed a vocoder of the direct performance type with a direct bypass of the consenant frequencies, since it was evident, that only the vowel frequencies had to be encoded and decoded and not R16 the consonant frequencies, which did not have to change anyway. This system, which was patented, resulted in an instrument of and presence superior intelligibility/and fast response. The Moog vocoder was 822 built under the same patent. After my vocoder a number of other 569 vocoders appeared on the scene, such as the Korg, the Electrohar-570 monix, the Syntovox and the Roland, which use the conventional systems approach. R/6

Simovox 1929

<u>Closing remarks</u>: This concludes my presentation of today on the Lespite of the history of electronic sound modification. Due to the limited time to me available I was only able to touch the tip of the iceberg, but I hope, that I have been able the expose some interesting hidden treasures.